
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

PerformancePerformance

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

Important Equations (so far)Important Equations (so far)

!

Performance =
1

Execution time

!

CPU time =
Instructions

Program
"

Cycles

Instruction
"

Seconds

Cycle

!

CPU clock cycles = CPIi

i=1

n

" # Instructionsi

!

Speedup =
Performance (B)

Performance (A)
=

Time (A)

Time (B)

• A common theme in Hardware design is to make the common case fast

• Increasing the clock rate would not affect memory access time

• Using a floating point processing unit does not speed integer ALU operations

Example: Floating point instructions improved to run 2X; but only 10% of

 actual instructions are floating point

 Exec-Timenew = Exec-Timeold x (0.9 + .1/2) = 0.95 x Exec-Timeold

 Speedupoverall = Exec-Timenew / Exec-Timeold = 1/0.95 = 1.053

The performance enhancement possible with a given improvement

is limited by the amount that the improved feature is used

!

Execution time after improvement =

Execution time affected by the improvement

Amount of improvement

 + Execution time unaffected

AmdahlAmdahl’’s Laws Law

AhmdalAhmdal’’s s Law for SpeedupLaw for Speedup

!

Timeold = Timeold * Fractionunchanged + Fractionenhanced()

!

Timenew = Timeold * Fractionunchanged +
Fractionenhanced

Speedupenhanced

"

$

%

&
'

!

Speedupoverall =
Timeold

Timenew

!

=
Timeold

Timeold * Fractionunchanged +
Fractionenhanced

Speedupenhanced

"

$

%

&
'

!

=
1

Fractionunchanged +
Fractionenhanced

Speedupenhanced

!

Speedupoverall =
1

1" Fractionenhanced() +
Fractionenhanced

Speedupenhanced

CDC 6600

NU 1108

ATLAS

ICL 1907 1.1 µs

B5500

KDF9

Time

Instructions

executed

Code size in

instructions

Code size

in bits

12

11

10

9

8

7

6

5

4

3

2

1

• The Burroughs B5500 machine is designed specifically for Algol 60 programs

• Although CDC 6600’s programs are over 3 times as big as those of B5500,
yet the CDC machine runs them almost 6 times faster

• Code size cannot be used as an indication for performance

Can Hardware-IndependentCan Hardware-Independent

Metrics Predict Performance?Metrics Predict Performance?

Computer A Computer B

Program 1 (seconds) 1 10

Program 2 (seconds) 1000 100

Total time (seconds) 1001 110

• Wrong summary can present a confusing picture
– A is 10 times faster than B for program 1
– B is 10 times faster than A for program 2

• Total execution time is a consistent summary measure

• Relative execution times for the same workload
– Assuming that programs 1 and 2 are executing for the same number of
times on computers A and B

!

CPU Performance (B)

CPU Performance (A)
=

Total execution time (A)

Total execution time (B)
=

1001

110
= 9.1

Execution time is the only valid and unimpeachable measure of performance

Comparing & SummarizingComparing & Summarizing

PerformancePerformance

!
=

=
n

i

i
n 1

TimeExecution_
1

(AM) Mean Arithmetic

!
=

"=
n

i

i
w

1

 i TimeExecution_(WAM) MeanArithmetic Weighted

Norm. to A Norm. to B
Time on A Time on B

A B A B

Program 1 1 10 1 10 0.1 1

Program 2 1000 100 1 0.1 10 1

AM of normalized time 1 5.05 5.05 1

AM of time 500.5 55 1 0 .11 9.1 1

• Weighted arithmetic means summarize performance while tracking exec. time

• Never use AM for normalizing time relative to a reference machine

Where: n is the number of programs executed

wi is a weighting factor that indicates the frequency of executing program i

 with and 10 !! iw!
=

=
n

i

w

1

 i 1

Performance Summary (Cont.)Performance Summary (Cont.)

! Geometric mean is suitable for reporting average normalized execution time

 Where: n is the number of programs executed

 With

n

n

i

i!
=

=
1

Time_ratioExecution_(GM) MeanGeometric

!!
"

#
$$
%

&
=

i

i

i

i

Y

X

Y

X
 MeanGeometric

)(MeanGeometric

)(MeanGeometric

Norm. to A Norm. to B
Time on A Time on B

A B A B

Program 1 1 10 1 10 0.1 1

Program 2 1000 100 1 0.1 10 1

GM of time or normalized time 31.62 31.62 1 1 1 1

Performance Summary (Cont.)Performance Summary (Cont.)

Performance BenchmarksPerformance Benchmarks

• Many widely-used benchmarks are small programs
that have significant locality of instruction and data
reference

• Universal benchmarks can be misleading since
hardware and compiler vendors do optimize their
design for these programs

• The best types of benchmarks are real applications
since they reflect the end-user interest

• Architectures might perform well for some
applications and poorly for others

• Compilation can boost performance by taking
advantage of architecture-specific features

• Application-specific compiler optimization are
becoming more popular

App. and arch. specific optimization can dramatically impact performance

0

100

200

300

400

500

600

700

800

tomcatvfppppmatrix300eqntottlinasa7doducspiceespressogcc

Benchmark
Compiler

Enhanced compiler

Effect of CompilationEffect of Compilation

The SPEC BenchmarksThe SPEC Benchmarks

• SPEC stands for System Performance
Evaluation Cooperative suite of benchmarks
– Created by a set of companies to improve the

measurement and reporting of CPU performance

• SPEC2000 is the latest suite that consists of
12 integer (written in C) and 14 floating-point
(in Fortran 77) programs
– Customized SPEC suites have been recently

introduced to assess performance of graphics and
transaction systems.

• Since SPEC requires running applications on
real hardware, the memory system has a
significant effect on performance

Hardware
Model number Powerstation 550

CPU 41.67-MHz POWER 4164

FPU (floating point) Integrated

Number of CPU 1

Cache size per CPU 64K data/8k instruction

Memory 64 MB

Disk subsystem 2 400-MB SCSI

Network interface N/A

Software
OS type and revision AIX Ver. 3.1.5

Compiler revision AIX XL C/6000 Ver. 1.1.5

AIX XL Fortran Ver. 2.2

Other software None

File system type AIX

Firmware level N/A

System
Tuning parameters None

Background load None

System state Multi-user (single-user login)

Guiding principle is reproducibility (report environment & experiments setup)

Performance ReportsPerformance Reports

machine measure the on time Execution

10/40 onSPARCstati SUN on time Execution
 ratio SPEC =

The SPEC BenchmarksThe SPEC Benchmarks

• Bigger numeric values of the SPEC ratio
indicate faster machine

SPEC95 for Pentium andSPEC95 for Pentium and

Pentium ProPentium Pro

Pentium
Clock rate (MHz)

Pentium Pro

2

0

4

6

8

3

1

5

7

9

10

200 25015010050

Clock rate (MHz)

2

0

4

6

8

3

1

5

7

9

10

200 25015010050

Pentium

Pentium Pro

• The performance measured may be different on other
Pentium-based hardware with different memory
system and using different compilers
– At the same clock rate, the SPECint95 measure shows that

Pentium Pro is 1.4-1.5 times faster while the SPECfp95
shows that it is 1.7-1.8 times faster

– When the clock rate is increased by a certain factor, the
processor performance increases by a lower factor

S
P

E
C

b
a
s
e
 C

IN
T

2
0
0
0

S
P

E
C

 C
IN

T
2
0
0
0
 p

e
r $

1
0
0
0
 in

 p
ric

e

• Different results are obtained for other benchmarks, e.g. SPEC CFP2000

• With the exception of the Sunblade price-performance metrics were
consistent with performance

Prices reflects those of July 2001

Price-Performance MetricPrice-Performance Metric

Historic PerspectiveHistoric Perspective

• In early computers most instructions of a
machine took the same execution time
– The measure of performance for old machines was

the time required performing an individual
operation (e.g. addition)

• New computers have diverse set of
instructions with different execution times
– The relative frequency of instructions across many

programs was calculated

– The average instruction execution time was
measured by multiplying the time of each
instruction by its frequency

• The average instruction execution time was a
small step to MIPS that grew in popularity

610 time Execution

count nInstructio
 MIPS) (native MIPS

!
=

The use of MIPS is simple and intuitive, faster machines have bigger MIPS

Using MIPSUsing MIPS

• MIPS = Million of Instructions Per Second
– one of the simplest metrics

– valid only in a limited context

• There are three problems with MIPS:
– MIPS specifies the instruction execution rate but

not the capabilities of the instructions

– MIPS varies between programs on the same
computer

– MIPS can vary inversely with performance (see
next example)

Consider the machine with the following three instruction classes and CPI:

Now suppose we measure the code for the same program from two different

compilers and obtain the following data:

Assume that the machine’s clock rate is 500 MHz. Which code sequence

will execute faster according to MIPS? According to execution time?

Answer:

Instruction class CPI for this instruction class

A 1

B 2

C 3

Instruction count in (billions) for each

instruction classCode from

A B C

Compiler 1 5 1 1

Compiler 2 10 1 1

i

n

i

i CCPI != "
=1

cycles clock CPUUsing the formula:

Sequence 1: CPU clock cycles = (5 !1 + 1 !2 + 1 !3) ! 109 = 10!109 cycles
Sequence 2: CPU clock cycles = (10 !1 + 1 !2 + 1 !3) ! 109 = 15!109 cycles

ExampleExample

Sequence 1: Execution time = (10!109)/(500!106) = 20 seconds
Sequence 2: Execution time = (15!109)/(500!106) = 30 seconds

Therefore compiler 1 generates a faster program

rate Clock

cycles clock CPU
time Exection =Using the formula:

6
10 time Execution

count nInstructio
 MIPS

!
=Using the formula:

6

9

10 20

10 1) 1 (5
 MIPS

!

!++
=Sequence 1: = 350

6

9

10 30

10 1) 1 (10
 MIPS

!

!++
=Sequence 2: = 400

Although compiler 2 has a higher MIPS rating, the code from generated by
compiler 1 runs faster

Example (Cont.)Example (Cont.)

