CMSC 611: Advanced
Computer Architecture

Parallel Computation (2)

Most slides adapted from David Patterson. Some from Mohomed Younis




Shared Address Model

* Physical locations

— Each PE can name every physical location
In the machine

« Shared data

— Each process can name all data it shares
with other processes




Shared Address Model

« Data transfer

— Use load and store, VM maps to local or remote
location

— Extra memory level: cache remote data

— Significant research on making the translation
transparent and scalable for many nodes
« Handling data consistency and protection challenging

» Latency depends on the underlying hardware architecture
(bus bandwidth, memory access time and support for
address translation)

 Scalability is limited given that the communication model is
so tightly coupled with process address space




Data Parallel Languages

* SIMD programming
— PE point of view

— Data: shared or per-PE
* What data is distributed?
 What is shared over PE subset
« What data is broadcast with instruction stream?

— Data layout: shape [256][256]d;
— Communication primitives

— Higher-level operations
* Prefix sum: [i]r = > [jId
~1,1,2,3,4 > 1,1+1=2,2+42=4 4+3=7,7+4=11




Single Program Multiple Data

* Many problems do not map well to SIMD
— Better utilization from MIMD or ILP

- Data parallel model = Single Program
Multiple Data (SPMD) model

— All processors execute identical program
— Same program for SIMD, SISD or MIMD
— Compiler handles mapping to architecture




Three Fundamental Issues

* 1: Naming: how to solve large problem fast
— what data is shared
— how it is addressed
— what operations can access data
— how processes refer to each other

* Choice of naming affects code produced by a
compiler

— Just remember and load address or keep track of
processor number and local virtual address for

message passing
» Choice of naming affects replication of data

— In cache memory hierarchy or via SW replication
and consistency




Naming Address Spaces

 Global physical address space

— any processor can generate, address and access it
In a single operation

* Global virtual address space

— if the address space of each process can be
configured to contain all shared data of the parallel
program

* memory can be anywhere: virtual address translation
handles it

« Segmented shared address space

— locations are named <process number, address>
uniformly for all processes of the parallel program




Three Fundamental Issues

» 2: Synchronization: To cooperate,
processes must coordinate

— Message passing is implicit coordination
with transmission or arrival of data

— Shared address — additional operations to
explicitly coordinate:
e.g., write a flag, awaken a thread, interrupt
a processor




Three Fundamental Issues

- 3: Latency and Bandwidth
— Bandwidth

* Need high bandwidth in communication

« Cannot scale, but stay close

« Match limits in network, memory, and processor

* Overhead to communicate is a problem in many machines

— Latency
 Affects performance, since processor may have to wait
- Affects ease of programming, since requires more thought
to overlap communication and computation
— Latency Hiding
* How can a mechanism help hide latency?

« Examples: overlap message send with computation, pre-
fetch data, switch to other tasks




Some Graphics Examples

Pixel-Planes 4
Pixel-Planes 5
Pixel-Flow

NVIDIA GeForce 6 series
ATl 7800
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Pixel-Planes 5

- Message-passing
+ ~40 1860 CPUs
« ~20 128x128 SIMD arrays (~80 tiles/screen)
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Fuchs, et al., "Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System Using Processor Enhanced Memories", SIGGRAPH 89




Pixel-Planes 5
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Pixel-Flow

* Message-passing
» ~35 nodes, each with
— 2 HP-PA 8000 CPUs

— 128x64 SIMD array (~160 tiles/screen)
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PC Graphics Cards
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NVIDIA 7800 / G70




NVIDIA 7800 / G70
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ATI x1900 / R580

Texture Address Units

Texture Texture
Address Address

Unig UE"' 1 texture address instructions
per unit per clock cycle

Texture Texture
Address Address
Unit Unit
3 4

Pixel Shader Processor
Per Clock Cycle:

1 vec3 ADD + input modifier

. 1 scalar ADD + input modifier
Quad Pixel Sh 1 vec3 ADD/MUL/MADD

1 scalar ADD/MUL/MADD
1 flow control instruction




