CMSC 611: Advanced Computer Architecture

Parallel Computation (2)

Shared Address Model

- Physical locations
 - Each PE can name every physical location in the machine
- Shared data
 - Each process can name all data it shares with other processes

Shared Address Model

- Data transfer
 - Use load and store, VM maps to local or remote location
 - Extra memory level: cache remote data
 - Significant research on making the translation transparent and scalable for many nodes
 - Handling data consistency and protection challenging
 - Latency depends on the underlying hardware architecture (bus bandwidth, memory access time and support for address translation)
 - Scalability is limited given that the communication model is so tightly coupled with process address space

Data Parallel Languages

- SIMD programming
 - PE point of view
 - Data: shared or per-PE
 - What data is distributed?
 - What is shared over PE subset
 - What data is broadcast with instruction stream?
 - Data layout: shape [256][256]d;
 - Communication primitives
 - Higher-level operations
 - Prefix sum: [i]r = $\sum_{i \le i}$ [j]d
 - $-1,1,2,3,4 \rightarrow 1,1+1=2,2+2=4,4+3=7,7+4=11$

Single Program Multiple Data

- Many problems do not map well to SIMD
 - Better utilization from MIMD or ILP
- Data parallel model ⇒ Single Program Multiple Data (SPMD) model
 - All processors execute identical program
 - Same program for SIMD, SISD or MIMD
 - Compiler handles mapping to architecture

Three Fundamental Issues

- 1: Naming: how to solve large problem fast
 - what data is shared
 - how it is addressed
 - what operations can access data
 - how processes refer to each other
- Choice of naming affects code produced by a compiler
 - Just remember and load address or keep track of processor number and local virtual address for message passing
- Choice of naming affects replication of data
 - In cache memory hierarchy or via SW replication and consistency

Naming Address Spaces

- Global physical address space
 - any processor can generate, address and access it in a single operation
- Global virtual address space
 - if the address space of each process can be configured to contain all shared data of the parallel program
 - memory can be anywhere: virtual address translation handles it
- Segmented shared address space
 - locations are named process number, address
 uniformly for all processes of the parallel program

Three Fundamental Issues

- 2: Synchronization: To cooperate, processes must coordinate
 - Message passing is implicit coordination with transmission or arrival of data
 - Shared address → additional operations to explicitly coordinate:
 e.g., write a flag, awaken a thread, interrupt a processor

Three Fundamental Issues

- 3: Latency and Bandwidth
 - Bandwidth
 - Need high bandwidth in communication
 - Cannot scale, but stay close
 - Match limits in network, memory, and processor
 - Overhead to communicate is a problem in many machines
 - Latency
 - Affects performance, since processor may have to wait
 - Affects ease of programming, since requires more thought to overlap communication and computation
 - Latency Hiding
 - How can a mechanism help hide latency?
 - Examples: overlap message send with computation, prefetch data, switch to other tasks

Some Graphics Examples

- Pixel-Planes 4
- Pixel-Planes 5
- Pixel-Flow
- NVIDIA GeForce 6 series
- ATI 7800

Pixel-Planes 4

 512x512 SIMD array (full screen)

Fuchs, et al., "Fast Spheres, Shadows, Textures, Transparencies, and Image Enhancements in Pixel-Planes", SIGGRAPH 1985

Pixel-Planes 5

- Message-passing
- ~40 i860 CPUs
- ~20 128x128 SIMD arrays (~80 tiles/screen)

uchs, et al., "Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System Using Processor Enhanced Memories", SIGGRAPH 89

Pixel-Planes 5

uchs, et al., "Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System Using Processor Enhanced Memories", SIGGRAPH 89

Pixel-Flow

- Message-passing
- ~35 nodes, each with
 - 2 HP-PA 8000 CPUs
 - 128x64 SIMD array (~160 tiles/screen)

Pixel-Flow

Eyles, et al., "PixelFlow: The Realization", Graphics Hardware 1997

PC Graphics Cards

Kilgariff and Fernando, "The GeForce 6 Series Architecture", GPU Gems 2

NVIDIA 7800 / G70

NVIDIA 7800 / G70

ATI x1900 / R580

ATI x1900 / R580

