CMSC 611: Advanced
Computer Architecture

Parallel Computation (2)

Most slides adapted from David Patterson. Some from Mohomed Younis




Shared Address Model

* Physical locations

— Each PE can name every physical location
In the machine

« Shared data

— Each process can name all data it shares
with other processes




Shared Address Model

« Data transfer

— Use load and store, VM maps to local or remote
location

— Extra memory level: cache remote data

— Significant research on making the translation
transparent and scalable for many nodes
« Handling data consistency and protection challenging

» Latency depends on the underlying hardware architecture
(bus bandwidth, memory access time and support for
address translation)

 Scalability is limited given that the communication model is
so tightly coupled with process address space




Data Parallel Languages

* SIMD programming
— PE point of view

— Data: shared or per-PE
* What data is distributed?
 What is shared over PE subset
« What data is broadcast with instruction stream?

— Data layout: shape [256][256]d;
— Communication primitives

— Higher-level operations
* Prefix sum: [i]r = > [jId
~1,1,2,3,4 > 1,1+1=2,2+42=4 4+3=7,7+4=11




Single Program Multiple Data

* Many problems do not map well to SIMD
— Better utilization from MIMD or ILP

- Data parallel model = Single Program
Multiple Data (SPMD) model

— All processors execute identical program
— Same program for SIMD, SISD or MIMD
— Compiler handles mapping to architecture




Three Fundamental Issues

* 1: Naming: how to solve large problem fast
— what data is shared
— how it is addressed
— what operations can access data
— how processes refer to each other

* Choice of naming affects code produced by a
compiler

— Just remember and load address or keep track of
processor number and local virtual address for

message passing
» Choice of naming affects replication of data

— In cache memory hierarchy or via SW replication
and consistency




Naming Address Spaces

 Global physical address space

— any processor can generate, address and access it
In a single operation

* Global virtual address space

— if the address space of each process can be
configured to contain all shared data of the parallel
program

* memory can be anywhere: virtual address translation
handles it

« Segmented shared address space

— locations are named <process number, address>
uniformly for all processes of the parallel program




Three Fundamental Issues

» 2: Synchronization: To cooperate,
processes must coordinate

— Message passing is implicit coordination
with transmission or arrival of data

— Shared address — additional operations to
explicitly coordinate:
e.g., write a flag, awaken a thread, interrupt
a processor




Three Fundamental Issues

- 3: Latency and Bandwidth
— Bandwidth

* Need high bandwidth in communication

« Cannot scale, but stay close

« Match limits in network, memory, and processor

* Overhead to communicate is a problem in many machines

— Latency
 Affects performance, since processor may have to wait
- Affects ease of programming, since requires more thought
to overlap communication and computation
— Latency Hiding
* How can a mechanism help hide latency?

« Examples: overlap message send with computation, pre-
fetch data, switch to other tasks




Some Graphics Examples

Pixel-Planes 4
Pixel-Planes 5
Pixel-Flow

NVIDIA GeForce 6 series
ATl 7800




Hoat Graphic System's

Pixel-Planes 4

Datahsae

Iransfor matien Unit

» 512x512 SIMD array G [
(full screen) Lprimves }—

| User
Inputa

Tramslator

“Planar Coeff's (A,8.C)

+ Inatructions ]
l Contreller

Pixel-Planes

Yideo
Contreller

Graphic System

([ Bit-Serial
Coulfl™a » Instr's

1_1

+

frame Butter
(Pxpl Memary Chip Array)

G e e s

] + L 3 . L 2

1 1| L |

(_:Szanlardr
| RGB Video |

Fuchs, et al., "Fast Spheres, Shadows, Textures, Transparencies, and Image Enhancements in Pixel-Planes", SIGGRAPH 1985




Pixel-Planes 5

- Message-passing
+ ~40 1860 CPUs
« ~20 128x128 SIMD arrays (~80 tiles/screen)

32 bils :
NHz
ﬂ 8 x 32 hits.
20 MH -
: Ciraphics
MO S &)

: ] WL il
Ring ‘ \k
Network HIE Workstation

.35

F'rame
Renderer Butter

Fuchs, et al., "Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System Using Processor Enhanced Memories", SIGGRAPH 89




Pixel-Planes 5

Custom Memory Chips
Memory
NS bats
R Renderer Board
qli\!-_ King Store Coneroller
1
| ¥
[Ooomooo 4 |
O000Ooo0Oa Hacking Stare
Image 1 28x 128 Array

Cweneralion
Controlies

—— -

M Z‘l '\.l
I'T-. CUSSOTS

000000 0o
00000000

(4K Basfpixel

8 MHB Video RAM

-

o

—P» Rumg

Noxle

Ring
.\'.".IL'

>

Fuchs, et al., "Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System Using Processor Enhanced Memories", SIGGRAPH 89




Pixel-Flow

* Message-passing
» ~35 nodes, each with
— 2 HP-PA 8000 CPUs

— 128x64 SIMD array (~160 tiles/screen)

PixelFlow _(wpto3
Chassis

GP GP {ees | GP GP GP

0 P 3 B
Aeomii gy Namork :fl I G 3 % AN [

Image Composition

SRpla s ‘I PixelFlow
per ¢hassis) | Chassis !
i || P || GP |ees |ap || 6P {| 0GP |
i ; ; i
: 1 I 1
353 1 3 L |
2

5 o n -
Network re (1 BB ﬂ".ﬂ RB : ap {{ R |T: [{ BB : AB r... R8 [| RB {] RB !
i
; | [} |~ Vi ;
g: :l; .m§
r
i
Host |! “—»| Display
...... — | -

Eyles, et al., "PixelFlow: The Realization", Graphics Hardware 1997




Rucssy Busy |
63 Pibyles fgec | T
Raeleriziag ur sl
Irezruzlloss, Ul =
PEbyten (e -

Gazmrelry Malvok;
0 Slbpret § sz

Pixel-Flow

PA-8000 CPU

FPA-3000 CPU

OF v Qeuneeny
e | Hetanrl; 240 Nojytcs
. fsee

ek diraslion

Twaps Conapadliic

2 MByles cache i 2 MByles cacha
e A W— F, . I
"""" — Geometry '
T + Pracessor Board !
e A Malr Hemary: |
Altho 4 58517 Mipler, i
1] 4% Uiytes ) sec !
X * i
Rastérizar Board 4
T J Qakla b
3
, — - —
| 9r e
j E18C ¥ (8I 3492 PE amuy}

o o o |

Repszak:
b4 Gbyles fsec ead b,
dinetion Y

O O i N
/| DOoOoooo /
i o
| TETIETE [ e
—m 00000000 [ | [ s
A EZLALTL | e

Fruwe Bodfer

1864 || B3¢ || 1604
(1] L] N3

1564
»h
L, 4

Storar

[fQ or Yideo Daughter Card

Eyles, et al., "PixelFlow: The Realization", Graphics Hardware 1997

+ [ wdte Jeearnseer sta
| Spisels ¢ see Lluor cut




PC Graphics Cards

[ ¥ A
o Mo
- j

o
! A U
o n
aoa's
North Brdge == wru poem T3 Diuplay

I oy 2 35 60
L
)

|

'
ey Periphens

Kilgariff and Fernando, “The GeForce 6 Series Architecture”, GPU Gems 2




NVIDIA 7800 / G70




NVIDIA 7800 / G70

Input Vertex Input Fragment
Data Data

FP32
Shader Mini-ALU
Unit 1

FP Texture
Processor

L2 Texture L1 Texture Mini-ALU
Cache | Cache

Branch
Unit
Branch

L2 Texture Primitive Processor

Cache ASSGmb'y

Viewport Processing

Output
Shaded Fragments

To Setup




Pixel
Shader

Engine

*
x

>3
HEEEEE BEEREE

ATI x1900 / R580

Ultra-Threaded
Dispatch
Processor

Quad, Quad Quoad Quad Quad
Wixed] Pixell Pixell Pixel] Pixch
Shader Shader Shader Shader Shader
Kordd Kord Kordd Kored Kordd

S General Purpose Register Arrays'

TR RENENE i s dsasmsiaisn  lasdsdsed
[t ] HHHHHE imifmnG SEEEmE (ESEE Elllll! EHIIIHEI

Pixell
Shader
Kord

PPY 9inixa )

| 5594

|

0
g
3
=
z
@

-
3
c
=
0]
C
=2
=
n
g
g

ayoen aunixay




ATI x1900 / R580

Texture Address Units

Texture Texture
Address Address

Unig UE"' 1 texture address instructions
per unit per clock cycle

Texture Texture
Address Address
Unit Unit
3 4

Pixel Shader Processor
Per Clock Cycle:

1 vec3 ADD + input modifier

. 1 scalar ADD + input modifier
Quad Pixel Sh 1 vec3 ADD/MUL/MADD

1 scalar ADD/MUL/MADD
1 flow control instruction




