
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

Parallel ComputationParallel Computation

Most slides adapted from David Patterson. Some from Mohomed Younis



Parallel ComputersParallel Computers

• Definition: “A parallel computer is a collection
of processing elements that cooperate and
communicate to solve large problems fast.”
– Almasi and Gottlieb, Highly Parallel

Computing,1989

• Parallel machines are expected to have a
bigger role in the future since:
– Microprocessors are likely to remain dominant

– Microprocessor technology is not expected to keep
the pace of performance

– Parallel architectures extend performance

– There has been steady progress in software
development for parallel architectures



Questions about parallelQuestions about parallel

computers:computers:

•How large a collection?

•How powerful are processing elements?

•How do they cooperate and

communicate?

•How are data transmitted?

•What type of interconnection?

•What are HW and SW primitives for

programmers?

•Does it translate into performance?



Questions about parallelQuestions about parallel

computers:computers:

• How large a collection?

• How powerful are processing elements?

• How do they cooperate and

communicate?

• How are data transmitted?

• What type of interconnection?

• What are HW and SW primitives for

programmers?

• Does it translate into performance?



Level of ParallelismLevel of Parallelism

• Bit-level parallelism

– ALU parallelism: 1-bit, 4-bits, 8-bit, ...

• Instruction-level parallelism (ILP)

– Pipelining, Superscalar, VLIW, Out-of-Order

execution

• Process/Thread-level parallelism

– Divide job into parallel tasks

• Job-level parallelism

– Independent jobs on one computer system



App
Perf
(GFLOPS)

Memory
(GB)

48 hour weather 0.1 0.1

72 hour weather 3 1

Pharmaceutical
design

100 10

Global Change,
Genome

1000 1000

ApplicationsApplications

• Scientific Computing

– Nearly Unlimited Demand (Grand Challenge):

– Successes in some real industries:

• Petroleum: reservoir modeling

• Automotive: crash simulation, drag analysis, engine

• Aeronautics: airflow analysis, engine, structural mechanics

• Pharmaceuticals: molecular modeling



Commercial ApplicationsCommercial Applications

• Transaction processing

• File servers

• Electronic CAD simulation

• Large WWW servers

• WWW search engines

• Graphics

– Graphics hardware

– Render Farms



FrameworkFramework

• Extend traditional computer architecture with a
communication architecture
– abstractions (HW/SW interface)

– organizational structure to realize abstraction
efficiently

• Programming Model:
– Multiprogramming: lots of jobs, no communication

– Shared address space: communicate via memory

– Message passing: send and receive messages

– Data Parallel: several agents operate on several
data sets simultaneously and then exchange
information globally and simultaneously (shared or
message passing)



Communication AbstractionCommunication Abstraction

• Shared address space:

– e.g., load, store, atomic swap

• Message passing:

– e.g., send, receive library calls

• Debate over this topic (ease of

programming, scaling)

– many hardware designs 1:1 programming

model



Taxonomy of ParallelTaxonomy of Parallel

ArchitectureArchitecture

• Flynn Categories

– SISD (Single Instruction Single Data)

– MISD (Multiple Instruction Single Data)

– SIMD (Single Instruction Multiple Data)

– MIMD (Multiple Instruction Multiple Data)



SISDSISD

• Uniprocessor



MISDMISD

• No commercial examples

• Different operations to a single data set

– Find primes

– Crack passwords



SIMDSIMD

• Vector/Array computers



SIMD ArraysSIMD Arrays

• Performance keys

– Utilization

– Communication



Data Parallel ModelData Parallel Model

• Operations performed in parallel on each
element of a large regular data structure, such
as an array
– One Control Processor broadcast to many

processing elements (PE) with condition flag per
PE so that can skip

• For distributed memory architecture data is
distributed among memories
– Data parallel model requires fast global

synchronization

– Data parallel programming languages lay out data
to processor

– Vector processors have similar ISAs, but no data
placement restriction



SIMD UtilizationSIMD Utilization

• Conditional Execution

– PE Enable

• if (f<.5) {...}

– Global enable check

• while (t > 0) {...}



Communication: MasPar MP1Communication: MasPar MP1

• Fast local X-net

• Slow global routing



Comunication: CM2Comunication: CM2

• Hypercube local routing

• Wormhole global routing



Communication: PixelFlowCommunication: PixelFlow

• Dense connections within block
– Single swizzle operation collects one word from

each PE in block
• Designed for antialiasing

– NO inter-block connection

– NO global routing



Can support either SW model on either HW basis

MIMDMIMD

• Message Passing

• Shared memory/distributed memory

– Uniform Memory Access (UMA)

– Non-Uniform Memory Access (NUMA)



Message passingMessage passing

• Processors have private memories,

communicate via messages

• Advantages:

– Less hardware, easier to design

– Focuses attention on costly non-local

operations



Message Passing ModelMessage Passing Model

• Each PE has local processor, data, (I/O)

– Explicit I/O to communicate with other PEs

– Essentially NUMA but integrated at I/O vs.

memory system

• Free run between Send & Receive

– Send + Receive = Synchronization between

processes (event model)

• Send: local buffer, remote receiving process/port

• Receive: remote sending process/port, local

buffer



History of message passingHistory of message passing

• Early machines

– Local communication

– Blocking send & receive

• Later: DMA with non-blocking sends

– DMA for receive into buffer until processor

does receive, and then data is transferred to

local memory

• Later still: SW libraries to allow arbitrary

communication



ExampleExample

• IBM SP-2, RS6000 workstations in racks

– Network Interface Card has Intel 960

– 8X8 Crossbar switch as communication

building block

– 40 MByte/sec per link



Shared MemoryShared Memory

• Processors communicate with shared

address space

• Easy on small-scale machines

• Advantages:

– Model of choice for uniprocessors, small-

scale multiprocessor

– Ease of programming

– Lower latency

– Easier to use hardware controlled caching

– Difficult to handle node failure



Centralized Shared MemoryCentralized Shared Memory

•Processors share a single centralized (UMA) memory through
a bus interconnect

•Feasible for small processor count to limit memory contention

•Centralized shared memory architectures are the most
common form of MIMD design



Distributed MemoryDistributed Memory

• Uses physically distributed (NUMA) memory to support large
processor counts (to avoid memory contention)

• Advantages

– Allows cost-effective way to scale the memory bandwidth

– Reduces memory latency

• Disadvantage

– Increased complexity of communicating data


