
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

Instruction Set Architecture (2)Instruction Set Architecture (2)

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science



Data is based on SPEC2000 on Alpha

Control Flow InstructionsControl Flow Instructions

• Jump: unconditional change in the control flow

• Branch: conditional change in the control flow

• Procedure calls and returns



Destination Address DefinitionDestination Address Definition

• PC-relative addressing
– Good for short position-independent forward &

backward jumps

• Register indirect addressing
– Good for dynamic libraries, virtual functions &

packed case statements

Data is based SPEC2000 on Alpha



Name How condition is tested Advantages Disadvantages 

Condition 

Code 
(CC) 

Special bits are set by ALU 

operations, possibly under 
program control 

Sometimes condition 

is set for free 

CC is extra state. Condition 

codes constrain instructions’ 
ordering since they pass info. 
from one instruction to a branch 

Condition 
register 

Test arbitrary register with 
the result of a comparison 

Simple Uses up a register 

Compare 
& branch 

Compare is part of the 
branch.  

One instruction rather 
than two for a branch 

May be too much work per 
instruction 

 

Remember to focus

on the common case

Based on SPEC92 on MIPS

Condition EvaluationCondition Evaluation



Data is based on SPEC2000 on Alpha

Different benchmark and

machine set new design priority

 DSPs support repeat instruction for for loops (vectors) using 3 registers

Frequency of Types ofFrequency of Types of

ComparisonComparison



Type and Size of OperandsType and Size of Operands

• Operand type encoded in instruction opcode

– The type of an operand effectively gives its size

• Common types include character, half word and word
size integer, single- and double-precision floating point
– Characters are almost always in ASCII, though 16-bit

Unicode (for international characters) is gaining popularity

– Integers in 2’s complement

– Floating point in IEEE 754



Unusual TypesUnusual Types

• Business Applications
– Binary Coded Decimal

(BCD)
• Exactly represents all

decimal fractions (binary
doesn’t!)

• DSP
– Fixed point

• Good for limited range
numbers: more mantissa bits

– Block floating point
• Single shared exponent for

multiple numbers

• Graphics
– 4-element vector operations

(RGBA or XYZW)
• 8-bit, 16-bit or single-

precision floating point

8-bit exponent8-bit exponent

24-bit mantissa24-bit mantissa

fixed exponentfixed exponent

32-bit mantissa32-bit mantissa



Size of OperandsSize of Operands

• Double-word: double-precision floating point + addresses in 64-
bit machines

• Words: most integer operations + addresses in 32-bit machines

• For the mix in SPEC, word and double-word data types
dominates

Frequency of reference by size 
based on SPEC2000 on Alpha



Example:

  Assembly: ADD $t0, $s1, $s2

  M/C language (binary): 000000 00001 00010 00000 00000 100000

0000 0000 0010 0010 0000 0000 0010 0000

  M/C language (hex): 0x00220020

Note: MIPS compiler by default maps $s0,…,$s7 to reg. 16-23 and $t0,…,$t7 to reg. 8-15

Instruction RepresentationInstruction Representation

• All data in computer systems is represented in binary

• Instructions are no exception

• The program that translates the human-readable code
to numeric form is called an Assembler

• Hence machine-language or assembly-language



Encoding an Instruction SetEncoding an Instruction Set

• Affects the size of the compiled program

• Also complexity of the CPU implementation

• Operation in one field called opcode

• Addressing mode in opcode or separate field

• Must balance:
– Desire to support as many registers and addressing modes

as possible

– Effect of operand specification on the size of the instruction
(and program)

– Desire to simplify instruction fetching and decoding during
execution

• Fixed size instruction encoding simplifies CPU design
but limits addressing choices



Encoding ExamplesEncoding Examples



MIPS Instruction FormatsMIPS Instruction Formats

opcodes
 000 001 010 011 100 101 110 111

000 R-type  j jal beq bne blez bgtz

001 addi addiu slti sltiu andi ori xori  

010         

011 llo lhi trap      

100 lb lh  lw lbu lhu   

101 sb sh  sw     

110         

111         

funct codes
 000 001 010 011 100 101 110 111

000 sll  srl sra sllv  srlv srav

001 jr jalr       

010 mfhi mthi mflo mtlo     

011 mult multu div divu     

100 add addu sub subu and or xor nor

101   slt sltu     

110         

111         



The Stored Program ConceptThe Stored Program Concept

• Today’s computers are built
on two key principles :
– Instructions are represented

as numbers

– Programs can be stored in
memory to be read or
written just like numbers

• Memory can contain:
– the source code for an editor

– the compiled m/c code for
the editor

– the text that the compiled
program is using

– the compiler that generated
the code

Processor

Accounting program

(machine code)

Editor program
(machine code)

C compiler

(machine code)

Payroll data

Book text

Source code in C

for editor program

Memory



GPU Shading ISAGPU Shading ISA

• Data

– IEEE-like floating point

– 4-element vectors

• Most instructions perform operation on all four

• Addressing

– No addresses

– ATTRIB, PARAM, TEMP, OUTPUT

– Limited arrays

– Element selection (read & write)

• C.xyw, C.rgba



GPU Shading ISAGPU Shading ISA

• Instructions:
Instruction Operation Instruction Operation 

ABS r,s r = abs(s) MIN r,s1,s2 r = min(s1,s2) 
ADD r,s1,s2 r = s1+s2 MOV r,s1 r = s1 
CMP r,c,s1,s2 r = c<0 ? s1 : s2 MUL r,s1,s2 r = s1*s2 
COS r,s r = cos(s) POW r,s1,s2 r ! s1s2 

DP3 r,s1,s2 r = s1.xyz • s2.xyz RCP r,s1 r = 1/s1 
DP4 r,s1,s2 r = s1 • s2 RSQ r,s1 r = 1/sqrt(s1) 
DPH r,s1,s2 r = s1.xyz1 • s2 SCS r,s1 r = (cos(s),sin(s),?,?) 
DST r,s1,s2 r = (1,s1.y*s2.y,s1.z,s2.w) SGE r,s1,s2 r = s1"s2 ? 1 : 0 

EX2 r,s r ! 2s SIN r,s r = sin(s) 
FLR r,s r = floor(s) SLT r,s1,s2 r = s1<s2 ? 1 : 0 
FRC r,s r = s - floor(s) SUB r,s1,s2 r = s1-s2 
KIL s if (s<0) discard SWZ r,s,cx,cy,cz,cw r = swizzle(s) 

LG2 r,s r ! log2(s) TEX r,s,name,nD r = texture(s) 
LIT r,s r = lighting computation TXB r,s,name,nD r = textureLOD(s) 
LRP r,t,s1,s2 r = t*s1 + (1-t)*s2 TXP r,s,name,nD r = texture(s/s.w) 
MAD r,s1,s2,s3 r = s1*s2 + s3 XPD r,s1,s2 r = s1 s2 

MAX r,s1,s2 r = max(s1,s2)   

 



GPU Shading ISAGPU Shading ISA

• Notable:

– Many special-purpose instructions

– No binary encoding, interface is text form

• No ISA limits on future expansion

• No ISA limits on registers

• No ISA limits on immediate values

– No branching! (exists now… added later)


