
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

Instruction Set ArchitectureInstruction Set Architecture

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

memory
addresses

Max. number
of operands

Examples

0 3 SPARC, MIPS, PowerPC, ALPHA

1 2 Intel 60X86, Motorola 68000

2 2 VAX (also has 3 operands format)

3 3 VAX (also has 2 operands format)

Effect of the number of memory operands:

Type Advantages Disadvantages

Reg-Reg (0,3) - Fixed length instruction encoding

- Simple code generation model

- Similar execution time (pipeline)

- Higher instruction count

- Some instructions are short leading to

 wasteful bit encoding

Reg-Mem (1,2) - Direct access without loading

- Easy instruction encoding

- Can restrict # register available for use

- Clocks per instr. varies by operand type

- Source operands are destroyed

Mem-Mem (3,3) - No temporary register usage

- Compact code

- Less potential for compiler optimization

- Can create memory access bottleneck

Register-Memory ArchRegister-Memory Arch

100

10

101

1

12

8

4

0

DataAddress

MemoryProcessor

Object
addressed

Aligned at
byte offsets

Misaligned at
byte offsets

Byte 1,2,3,4,5,6,7 Never

Half word 0,2,4,6 1,3,5,7

Word 0,4 1,2,3,5,6,7

Double word 0 1,2,3,4,5,6,7

Memory AddressingMemory Addressing

• The address of a word matches the byte address of one of its 4
bytes

• The addresses of sequential words differ by 4 (word size in byte)

• Words' addresses are multiple of 4 (alignment restriction)

– Misalignment (if allowed) complicates memory access and causes
programs to run slower

Byte OrderByte Order

• Given N bytes, which is the most significant, which is

the least significant?

– “Big Endian”

• Leftmost / most significant byte = word address

• Intel (among others)

– “Little Endian”

• Rightmost / least significant byte = word address

• Motorola, TCP/IP (among others)

• Byte ordering can be as problem when exchanging

data among different machines

• Can also affect array index calculation or any other

operation that treat the same data a both byte and

word.

Addressing ModesAddressing Modes

• How to specify the location of an operand
(effective address)

• Addressing modes have the ability to:
– Significantly reduce instruction counts

– Increase the average CPI

– Increase the complexity of building a machine

• VAX machine is used for benchmark data
since it supports wide range of memory
addressing modes

• Can classify based on:
– source of the data (register, immediate or memory)

– the address calculation (direct, indirect, indexed)

Mode Example Meaning When used

Register ADD R4, R3 Regs[R4] = Regs[R4] +
Regs[R3]

When a value is in a register

Immediate ADD R4, #3 Regs[R4] = Regs[R4] + 3 For constants

Register indirect ADD R4, (R1) Regs[R4] = Regs[R4] +
Mem[Regs[R1]]

Accessing using a pointer or a
computed address

Direct or
absolute

ADD R4, (1001) Regs[R4] = Regs[R4] +
Mem[1001]

Sometimes useful for accessing
static data; address constant
may need to be large

Displacement ADD R4, 100 (R1) Regs[R4] = Regs[R4] +
Mem[100 + Regs[R1]]

Accessing local variables

Indexed ADD R4, (R1 + R2) Regs[R4] = Regs[R4] +
Mem[Regs[R1] +
Regs[R2]]

Sometimes useful in array
addressing: R1 = base of the
array: R2 = index amount

Autoincrement ADD R4, (R2) + Regs[R4] = Regs[R4] +
Mem[Regs[R2]]

Regs[R2] = Regs[R2] + d

Useful for stepping through
arrays within a loop. R2 points to
start of the array; each reference
increments R2 by d.

Auto decrement ADD R4, -(R2) Regs[R2] = Regs[R2] – d

Regs[R4] = Regs[R4] +
Mem[Regs[R2]]

Same use as autoincrement.
Autodecrement/increment can
also act as push/pop to
implement a stack

Scaled ADD R4, 100 (R2) [R3] Regs[R4] = Regs[R4] +
Mem[100 + Regs[R2] +
Regs[R3] * d]

Used to index arrays.

Example of Addressing ModesExample of Addressing Modes

Focus on immediate and

displacement modes since

they are used the most

Based on SPEC89 on VAX

Addressing Mode UseAddressing Mode Use

P
e
rc

e
n

ta
g

e
 o

f
d

is
p

la
c
e
m

e
n

t

Number of bits needed for a displacement value in SPEC2000 benchmark

Data is based on SPEC2000 on Alpha

(only 16 bit displacement allowed)

Displacement AddressingDisplacement Addressing

ModesModes
• The range of displacement supported

affects the length of the instruction

 Statistics are based on SPEC2000 benchmark on Alpha

Immediate Addressing ModesImmediate Addressing Modes

• Immediate values for what operations?

Measurements were taken on Alpha

(only 16 bit immediate value allowed)

P
e
rc

e
n

ta
g

e
 o

f
Im

m
e
d

ia
te

 V
a
lu

e
s

Number of bits needed for a immediate values in SPEC2000 benchmark

Distribution of ImmediateDistribution of Immediate

ValuesValues
• Range affects instruction length

– Similar measurements on the VAX (with 32-bit immediate

values) showed that 20-25% of immediate values were

longer than 16-bits

Addressing Mode for SignalAddressing Mode for Signal

ProcessingProcessing
• DSP offers special addressing modes to

better serve popular algorithms

• Special features requires either hand

coding or a compiler that uses such

features

Fast Fourier Transform

0 (0002) ! 0 (0002)

1 (0012) ! 4 (1002)

2 (0102) ! 2 (0102)

3 (0112) ! 6 (1102)

4 (1002) ! 1 (0012)

5 (1012) ! 5 (1012)

6 (1102) ! 3 (0112)

7 (1112) ! 7 (1112)

Addressing Mode for SignalAddressing Mode for Signal

ProcessingProcessing
• Modulo addressing:

– Since DSP deals with
continuous data streams,
circular buffers common

– Circular or modulo
addressing: automatic
increment and decrement /
reset pointer at end of buffer

• Reverse addressing:

– Address is the reverse order
of the current address

– Expedites access /
otherwise require a number
of logical instructions or
extra memory accesses

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+

Summary of MIPS AddressingSummary of MIPS Addressing

ModesModes

Example:
Translation of a segment of a C program to MIPS assembly instructions:

C: f = (g + h) - (i + j)

(pseudo)MIPS:

add t0, g, h # temp. variable t0 contains "g + h"

add t1, i, j # temp. variable t1 contains "i + j"

sub f, t0, t1 # f = t0 - t1 = (g + h) - (i + j)

Operations of the ComputerOperations of the Computer

HardwareHardware

“There must certainly be instructions for performing the

 fundamental arithmetic operations.”

Burkes, Goldstine and Von Neumann, 1947

MIPS assembler allows only one instruction/line and ignore

comments following # until end of line

Operations in the InstructionOperations in the Instruction

SetSet
Operator type Examples

Arithmetic and logical Integer arithmetic and logical operations: add, and, subtract , or

Data Transfer Loads-stores (move instructions on machines with memory addressing)

Control Branch, jump, procedure call and return, trap

System Operating system call, Virtual memory management instructions

Floating point Floating point instructions: add, multiply

Decimal Decimal add, decimal multiply, decimal to character conversion

String String move, string compare, string search

Graphics Pixel operations, compression/decompression operations

• Arithmetic, logical, data transfer and control are almost standard
categories for all machines

• System instructions are required for multi-programming
environment although support for system functions varies

• Others can be primitives (e.g. decimal and string on IBM 360 and
VAX), provided by a co-processor, or synthesized by compiler.

Operations for Media & SignalOperations for Media & Signal

Process.Process.
• Partitioned Add:

– Partition a single register into multiple data
elements (e.g. 4 16-bit words in 1 64-bit register)

– Perform the same operation independently on each

– Increases ALU throughput for multimedia
applications

• Paired single operations
– Perform multiple independent narrow operations

on one wide ALU (e.g. 2 32-bit float ops)

– Handy in dealing with vertices and coordinates

• Multiply and accumulate
– Very handy for calculating dot products of vectors

(signal processing) and matrix multiplication

Rank 80x86 Instruction
Integer Average

(% total executed)

1 Load 22%

2 Conditional branch 20%

3 Compare 16%

4 Store 12%

5 Add 8%

6 And 6%
7 Sub 5%

8 Move register-register 4%

9 Call 1%

10 Return 1%

Total 96%

Make the common case fast by focusing on these operations

Frequency of OperationsFrequency of Operations

UsageUsage
• The most widely executed instructions are the

simple operations of an instruction set

• Average usage in SPECint92 on Intel 80x86:

Data is based on SPEC2000 on Alpha

Control Flow InstructionsControl Flow Instructions

• Jump: unconditional change in the control flow

• Branch: conditional change in the control flow

• Procedure calls and returns

Destination Address DefinitionDestination Address Definition

• PC-relative addressing
– Good for short position-independent forward &

backward jumps

• Register indirect addressing
– Good for dynamic libraries, virtual functions &

packed case statements

Data is based SPEC2000 on Alpha

