CMSC 611

Introduction / Evaluating Cost

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from David Culler, UC Berkeley CS252, Spr 2002 course slides, © 2002 UC Berkeley Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

MIPS R3000 ISA (Summary)

•	Instruction	Categories	

- Load/Store
- Computational
- Jump and Branch
- Floating Point
 - coprocessor
- Memory Management
- Special

3 Instruction Formats: all 32 bits wide

OP	rs	rt	rd	sa	funct		
OP	rs	rt	immediate				
OP jump target							

Machine Organization

- Capabilities & performance characteristics of principal functional units (e.g., Registers, ALU, Shifters, Logic Units, ...)
- Ways in which these components are interconnected
- Information flows between components
- Logic and means by which such information flow is controlled
- Choreography of functional units to realize the instruction set architecture
- Register Transfer Level Description

Logic Designer's View

ISA Level

Functional Units & Interconnect

Example Organization

TI SuperSPARCtm TMS390Z50 in Sun SPARCstation20

General Comp Organization

- Every piece of every computer, past and present: input, output, memory, datapath and control
- The design approach is constrained by the cost and size and capabilities required from every component
- An example design target can be 25% of cost on Processor, 25% of cost on minimum memory size, rest on I/O devices, power supplies, and chassis

Levels of Behavior Representation

Levels of Abstraction

- S/W and H/W consists of hierarchical layers of abstraction, each hides details of lower layers from the above layer
- The instruction set arch. abstracts the H/W and S/W interface and allows many implementation of varying cost and performance to run the same S/W

Forces on Computer Architecture

- Programming languages might encourage architecture features to improve performance and code size, e.g. Fortran and Java
- Operating systems rely on the hardware to support essential features such as semaphores and memory management
- Technology always raises the bar for what could be done and changes design's focus
- Applications usually derive capabilities and constrains
- History provides the starting point, filters out mistakes

Figure: David Patterson, UCB

Technology – dramatic change

- Processor
 - logic capacity: about 30% increase per year
 - clock rate: about 20% increase per year

Higher logic density gave room for instruction pipeline & cache

- Memory
 - DRAM capacity: about 60% increase per year (4x / 3 years)
 - Memory speed: about 10% increase per year
 - Cost per bit: about 25% improvement per year

Performance optimization no longer implies smaller programs

Disk

Capacity: about 60% increase per year
Computers became lighter and more power efficient

Technology Impact

In ~1985 the single-chip processor and the single-board computer emerged In the 2004+ timeframe, today's mainframes may be a single-chip computer

Figure: David Patterson, UCB

Slide: David Patterson, UCB

One Architectural Factor

Technology Impact on Design

- DRAM capacity 4x / 3 yrs; 16,000x in 20 yrs!
- Programming concern: cache not RAM size
- Processor organization becoming main focus for performance optimization
- HW designer focus not only performance but functional integration and power consumption (e.g. system on a chip)

Integrated Circuits: Fueling Innovation

- Chips begins with silicon, found in sand
- Silicon does not conduct electricity well and thus called semiconductor
- A special chemical process can transform tiny areas of silicon to either:
 - Excellent conductors of electricity (like copper)
 - Excellent insulator from electricity (like glass)
 - Areas that can conduct or insulate under a special condition (a switch)
- A transistor is simply an on/off switch controlled by electricity
- Integrated circuits combines dozens of hundreds of transistors in a chip

Integrated Circuits: Fueling Innovation

Technology innovations over time

Year	Technology used in computers	Relative performance/unit cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuits	900
1995	Very large-scale integrated circuit	2,400,000

Advances of the IC technology affect H/W and S/W design philosophy

Microelectronics Process

- Silicon ingots:
 - 6-12 inches in diameter and about 12-24 inches long
- Impurities in the wafer can lead to defective devices and reduces the yield

Real World Examples

Chip	Layers	Wafer cost	Defect/cm ²	Area (mm ²)	Dies/Wafer	Yield	Die Cost
386DX	2	\$900	1.0	43	360	71%	\$4
486DX2	3	\$1200	1.0	81	181	54%	\$12
PowerPC 601	4	\$1700	1.3	121	115	28%	\$53
HP PA 7100	3	\$1300	1.0	196	66	27%	\$73
DEC Alpha	3	\$1500	1.2	234	53	19%	\$149
SuperSPARC	3	\$1700	1.6	256	48	13%	\$272
Pentium	3	\$1500	1.5	296	40	9%	\$417

From "Estimating IC Manufacturing Costs," by Linley Gwennap,

Microprocessor Report, August 2, 1993, p. 15

Costs and Trends in Cost

- Understanding trends in component costs (how they will change over time) is an important issue for designers
- Component prices drop over time without major improvements in manufacturing technology

What Affects Cost?

- 1. Learning curve:
 - The more experience in manufacturing a component, the better the yield
 - In general, a chip, board or system with twice the yield will have half the cost.
 - The learning curve is different for different components, complicating design decisions
- 2. Volume
 - Larger volume increases rate of learning curve
 - Doubling the volume typically reduce cost by 10%
- 3. Commodities
 - Are essentially identical products sold by multiple vendors in large volumes
 - Foil the competition and drive the efficiency higher and thus the cost down