
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

Instruction Level ParallelismInstruction Level Parallelism

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

Floating-Point PipelineFloating-Point Pipeline

• Impractical for FP

ops to complete in

one clock

– (complex logic and/or

very long clock cycle)

• More complex

hazards

– Structural

– Data

Non-pipelined DIV

operation stalling

the whole pipeline

for 24 cycles
3-stage pipelined FP

addition

Integer ALU7-stage pipelined FP

multiply

Multi-cycle FP PipelineMulti-cycle FP Pipeline

Example: blue indicate where data is needed and red when result is available

MULTD IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

ADDD IF ID A1 A2 A3 A4 MEM WB

LD IF ID EX MEM WB

SD IF ID EX MEM WB

Multi-cycle FP: EX PhaseMulti-cycle FP: EX Phase

• Latency: cycles between instruction that produces result and
instruction that uses it

– Since most operations consume their operands at the beginning of
the EX stage, latency is usually number of the stages of the EX an
instruction uses

• Long latency increases the frequency of RAW hazards

• Initiation (Repeat) interval: cycles between issuing two operations
of a given type

Functional unit Latency Initiation interval

Integer ALU 0 1

Data memory (integer and FP loads) 1 1

FP add 3 1

FP multiply (also integer multiply) 6 1

FP divide (also integer divide) 24 25

Example of RAW hazard caused by the long latency

FP Pipeline ChallengesFP Pipeline Challenges

• Non-pipelined divide causes structural hazards

• Number of register writes required in a cycle can be larger than 1

• WAW hazards are possible

– Instructions no longer reach WB in order

• WAR hazards are NOT possible

– Register reads are still taking place during the ID stage

• Instructions can complete out of order

– Complicates exceptions

• Longer latency makes RAW stalls more frequent

Clock cycle number
Instruction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LD F4, 0(R2) IF ID EX MEM WB

MULTD F0, F4, F6 IF ID stall M1 M2 M3 M4 M5 M6 M7 MEM WB

ADDD F2, F0, F8 IF stall ID stall stall stall stall stall stall A1 A2 A3 A4 MEM WB

SD 0(R2), F2 IF stall stall stall stall stall stall ID EX stall stall stall MEM

Structural HazardStructural Hazard

Clock cycle number
Instruction

1 2 3 4 5 6 7 8 9 10 11

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

… IF ID EX MEM WB

… IF ID EX MEM WB

ADDD F2, F4, F6 IF ID A1 A2 A3 A4 MEM WB

… IF ID EX MEM WB

… IF ID EX MEM WB

LD F2, 0(R2) IF ID EX MEM WB

• At cycle 10, MULTD, ADDD and LD instructions all in MEM

• At cycle 11, MULTD, ADDD and LD instructions all in WB

– Additional write ports are not cost effective since they are rarely used

• Instead

– Detect at ID and stall

– Detect at MEM or WB and stall

WAW Data HazardsWAW Data Hazards

Clock cycle number
Instruction

1 2 3 4 5 6 7 8 9 10 11

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

… IF ID EX MEM WB

… IF ID EX MEM WB

ADDD F2, F4, F6 IF ID A1 A2 A3 A4 MEM WB

… IF ID EX MEM WB

LD F2, 0(R2) IF ID EX MEM WB

…. IF ID EX MEM WB

• WAW hazards can be corrected by either:

– Stalling the latter instruction at MEM until it is safe

– Preventing the first instruction from overwriting the register

• Correcting at cycle 11 OK unless intervening RAW/use of F2

• WAW hazards can be detected at the ID stage

– Convert 1st instruction to no-op

• WAW hazards are generally very rare, designers usually go with the
simplest solution

Detecting HazardsDetecting Hazards

• Hazards among FP instructions & and combined FP and integer
instructions

• Separate int & fp register files limits latter to FP load and store
instructions

• Assuming all checks are to be performed in the ID phase:

– Check for structural hazards:

• Wait if the functional unit is busy (Divides in our case)

• Make sure the register write port is available when needed

– Check for a RAW data hazard

• Requires knowledge of latency and initiation interval to decide when to
forward and when to stall

– Check for a WAW data hazard

• Write completion has to be estimated at the ID stage to check with other
instructions in the pipeline

• Data hazard detection and forwarding logic from values stored
between the stages

Maintaining PreciseMaintaining Precise

ExceptionsExceptions

• Pipelining FP instructions can cause out-

of-order completion

• Exceptions also a problem:

DIVF F0, F2, F4

ADDF F10, F10, F8

SUBF F12, F12, F14

– No data hazards

– What if DIVF exception occurs after ADDF

writes F10?

Four FP Exception SolutionsFour FP Exception Solutions

1. Settle for imprecise exceptions

– Some supercomputers still uses this approach

– IEEE floating point standard requires precise exceptions

– Some machine offer slow precise and fast imprecise exceptions

2. Buffer the results of all operations until previous instructions

complete

– Complex and expensive design (many comparators and large

MUX)

– History or future register file

Four FP Exception SolutionsFour FP Exception Solutions

3. Allow imprecise exceptions and get the handler to
clean up any miss

– Save PC + state about the interrupting instruction and all
out-of-order completed instructions

– The trap handler will consider the state modification caused
by finished instructions and prepare machine to resume
correctly

– Issues: consider the following example

Instruction1: Long running, eventual exception

Instructions 2 … (n-1) : Instructions that do not complete

Instruction n : An instruction that is finished

– The compiler can simplify the problem by grouping FP
instructions so that the trap does not have to worry about
unrelated instructions

Four FP Exception SolutionsFour FP Exception Solutions

4. Allow instruction issue to continue only if
previous instruction are guaranteed to cause
no exceptions:

– Mainly applied in the execution phase

– Used on MIPS R4000 and Intel Pentium

Stalls/Instruction, FP PipelineStalls/Instruction, FP Pipeline

More FP Pipeline PerformanceMore FP Pipeline Performance

This figure (A.36 in the book) contains several errors in either graph

or data. Only take-home: result stalls are most common by far

Instruction Level ParallelismInstruction Level Parallelism

(ILP)(ILP)
• Overlap the execution of unrelated

instructions

• Both instruction pipelining and ILP
enhance instruction throughput not the
execution time of the individual
instruction

• Potential of IPL within a basic block is
very limited

– in “gcc” 17% of instructions are control
transfer meaning on average 5 instructions
per branch

Loops: Simple & CommonLoops: Simple & Common

for (i=1; i<=1000; i=i+1)

 x[i] = x[i] + y[i];

• Techniques like loop unrolling convert loop-level
parallelism into instruction-level parallelism
– statically by the compiler

– dynamically by hardware

• Loop-level parallelism can also be exploited using
vector processing

• IPL feasibility is mainly hindered by data and control
dependence among the basic blocks

• Level of parallelism is limited by instruction latencies

Major AssumptionsMajor Assumptions

• Basic MIPS integer pipeline

• Branches with one delay cycle

• Functional units are fully pipelined or replicated (as many times as the

pipeline depth)

– An operation of any type can be issued on every clock cycle and there are no

structural hazard

Instruction producing
result

Instruction using
results

Latency in
clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store Double 2

Load Double FP ALU op 1

Load Double Store Double 0

Motivating ExampleMotivating Example
Loop: LD F0,x(R1) ;F0=vector element

 ADDD F4,F0,F2 ;add scalar from F2

 SD x(R1),F4 ;store result

 SUBI R1,R1,8 ;decrement pointer (DW)

 BNEZ R1,Loop ;branch R1!=zero

for (i=1000; i>0; i=i-1)

 x[i] = x[i] + s;

Loop: LD F0,x(R1)

 stall

 ADDD F4,F0,F2

 stall

 stall

 SD x(R1),F4

 SUBI R1,R1,8

 stall

 BNEZ R1,Loop

 stall

Standard Pipeline

execution

Loop: LD F0,x(R1)

 SUBI R1,R1,8

 ADDD F4,F0,F2

 stall ;F4 latency

 BNEZ R1,Loop

 SD x+8(R1),F4

Smart compiler

Sophisticated compiler optimization reduced

execution time from 10 cycles to only 6 cycles

Loop: LD F0,x(R1)

ADDD F4,F0,F2

SD x(R1),F4 ;drop SUBI & BNEZ

LD F6,x-8(R1)

ADDD F8,F6,F2

SD x-8(R1),F8 ;drop again

LD F10,x-16(R1)

ADDD F12,F10,F2

SD x-16(R1),F12 ;drop again

LD F14,x-24(R1)

ADDD F16,F14,F2

SD x-24(R1),F16

SUBI R1,R1,#32 ;alter to 4*8

BNEZ R1,LOOP

Loop: LD F0,x(R1)

 ADDD F4,F0,F2

 SD x(R1),F4

 SUBI R1,R1,8

 BNEZ R1,Loop

Replicate loop body 4 times, will need cleanup

phase if loop iteration is not a multiple of 4

Loop UnrollingLoop Unrolling

• 6 cycles, but only 3 are loop

body

• Loop unrolling limits

overhead at the expense of a

larger code

– Eliminates branch delays

– Enable effective scheduling

• Use of different registers

needed to limit data hazard

Scheduling Unrolled LoopsScheduling Unrolled Loops
Cycle Instruction

1 Loop: LD F0,x(R1)

3 ADDD F4,F0,F2

6 SD x(R1),F4

7 LD F6,x-8(R1)

9 ADDD F8,F6,F2

12 SD x-8(R1),F8

13 LD F10,x-16(R1)

15 ADDD F12,F10,F2

18 SD x-16(R1),F12

19 LD F14,x-24(R1)

21 ADDD F16,F14,F2

24 SD x-24(R1),F16

25 SUBI R1,R1,#32

27 BNEZ R1,LOOP

28 stall

Cycle Instruction

1 Loop: LD F0,x(R1)

2 LD F6,x-8(R1)

3 LD F10,x-16(R1)

4 LD F14,x-24(R1)

5 ADDD F4,F0,F2

6 ADDD F8,F6,F2

7 ADDD F12,F10,F2

8 ADDD F16,F14,F

9 SD x(R1),F4

10 SD x-8(R1),F8

11 SUBI R1,R1,#32

12 SD x+16(R1),F12

13 BNEZ R1,LOOP

14 SD x+8(R1),F1

Loop unrolling

exposes more

computation that

can be scheduled

to minimize the

pipeline stalls

Understanding

dependence

among

instructions is the

key for for

detecting and

performing the

transformation

Inter-instruction DependenceInter-instruction Dependence

• Determining how one instruction
depends on another is critical not only to
the scheduling process but also to
determining how much parallelism exists

• If two instructions are parallel they can
execute simultaneously in the pipeline
without causing stalls (assuming there is
not structural hazard)

• Two instructions that are dependent are
not parallel and their execution cannot
be reordered

Dependence ClassificationsDependence Classifications

• Data dependence (RAW)
– Transitive: i ! j ! k = i ! k

– Easy to determine for registers, hard for memory

• Does 100(R4) = 20(R6)?

• From different loop iterations, does 20(R6) = 20(R6)?

• Name dependence (register/memory reuse)
– Anti-dependence (WAR): Instruction j writes a register or

memory location that instruction i reads from and instruction i
is executed first

– Output dependence (WAW): Instructions i and j write the
same register or memory location; instruction ordering must
be preserved

• Control dependence, caused by conditional branching

Example: Name DependenceExample: Name Dependence
Loop: LD F0,x(R1)

 ADDD F4,F0,F2

 SD x(R1),F4

 LD F0,x-8(R1)

 ADDD F4,F0,F2

 SD x-8(R1),F4

 LD F0,x-16(R1)

 ADDD F4,F0,F2

 SD x-16(R1),F4

 LD F0,x-24(R1)

 ADDD F4,F0,F2

 SD x-24(R1),F4

 SUBI R1,R1,#32

 BNEZ R1,Loop

Loop: LD F0,x(R1)

ADDD F4,F0,F2

SD x(R1),F4

LD F6,x-8(R1)

ADDD F8,F6,F2

SD x-8(R1),F8

LD F10,x-16(R1)

ADDD F12,F10,F2

SD x-16(R1),F12

LD F14,x-24(R1)

ADDD F16,F14,F2

SD x-24(R1),F16

SUBI R1,R1,#32

BNEZ R1,LOOP

Register

renaming

• Again Name Dependencies are Hard for Memory Accesses

– Does 100(R4) = 20(R6)?

– From different loop iterations, does 20(R6) = 20(R6)?

• Compiler needs to know that R1 does not change ! 0(R1)! -8(R1)! -16(R1)! -24(R1)

and thus no dependencies between some loads and stores so they could be moved

