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Floating-Point PipelineFloating-Point Pipeline

• Impractical for FP

ops to complete in

one clock 

– (complex logic and/or

very long clock cycle)

• More complex

hazards

– Structural

– Data



Non-pipelined DIV

operation stalling

the whole pipeline

for 24 cycles
3-stage pipelined FP

addition

Integer ALU7-stage pipelined FP

multiply

Multi-cycle FP PipelineMulti-cycle FP Pipeline

Example: blue indicate where data is needed and red when result is available

MULTD IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

ADDD IF ID A1 A2 A3 A4 MEM WB

LD IF ID EX MEM WB

SD IF ID EX MEM WB



Multi-cycle FP: EX PhaseMulti-cycle FP: EX Phase

• Latency: cycles between instruction that produces result and
instruction that uses it

– Since most operations consume their operands at the beginning of
the EX stage, latency is usually number of the stages of the EX an
instruction uses

• Long latency increases the frequency of RAW hazards

• Initiation (Repeat) interval: cycles between issuing two operations
of a given type

Functional unit Latency Initiation interval 

Integer ALU 0 1 

Data memory (integer and FP loads) 1 1 

FP add 3 1 

FP multiply (also integer multiply) 6 1 

FP divide (also integer divide) 24 25 

 



Example of RAW hazard caused by the long latency

FP Pipeline ChallengesFP Pipeline Challenges

• Non-pipelined divide causes structural hazards

• Number of register writes required in a cycle can be larger than 1

• WAW hazards are possible

– Instructions no longer reach WB in order

• WAR hazards are NOT possible

– Register reads are still taking place during the ID stage

• Instructions can complete out of order

– Complicates exceptions

• Longer latency makes RAW stalls more frequent

Clock cycle number 
Instruction 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

LD F4, 0(R2) IF ID EX MEM WB             

MULTD F0, F4, F6  IF ID stall M1 M2 M3 M4 M5 M6 M7 MEM WB     

ADDD F2, F0, F8   IF stall ID stall stall stall stall stall stall A1 A2 A3 A4 MEM WB 

SD 0(R2), F2     IF stall stall stall stall stall stall ID EX stall stall stall MEM 

 



Structural HazardStructural Hazard

 

Clock cycle number 
Instruction 

1 2 3 4 5 6 7 8 9 10 11 

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB 

…  IF ID EX MEM WB      

…   IF ID EX MEM WB     

ADDD F2, F4, F6    IF ID A1 A2 A3 A4 MEM WB 

…     IF ID EX MEM WB   

…      IF ID EX MEM WB  

LD F2, 0(R2)       IF ID EX MEM WB 

• At cycle 10, MULTD, ADDD and LD instructions all in MEM

• At cycle 11, MULTD, ADDD and LD instructions all in WB

– Additional write ports are not cost effective since they are rarely used

• Instead

– Detect at ID and stall

– Detect at MEM or WB and stall



WAW Data HazardsWAW Data Hazards

 

Clock cycle number 
Instruction 

1 2 3 4 5 6 7 8 9 10 11 

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB 

…  IF ID EX MEM WB      

…   IF ID EX MEM WB     

ADDD F2, F4, F6    IF ID A1 A2 A3 A4 MEM WB 

…     IF ID EX MEM WB   

LD F2, 0(R2)      IF ID EX MEM WB  

….       IF ID EX MEM WB 

• WAW hazards can be corrected by either:

– Stalling the latter instruction at MEM until it is safe

– Preventing the first instruction from overwriting the register

• Correcting at cycle 11 OK unless intervening RAW/use of F2

• WAW hazards can be detected at the ID stage

– Convert 1st instruction to no-op

• WAW hazards are generally very rare, designers usually go with the
simplest solution



Detecting HazardsDetecting Hazards

• Hazards among FP instructions & and combined FP and integer
instructions

• Separate int & fp register files limits latter to FP load and store
instructions

• Assuming all checks are to be performed in the ID phase:

– Check for structural hazards:

• Wait if the functional unit is busy (Divides in our case)

• Make sure the register write port is available when needed

– Check for a RAW data hazard

• Requires knowledge of latency and initiation interval to decide when to
forward and when to stall

– Check for a WAW data hazard

• Write completion has to be estimated at the ID stage to check with other
instructions in the pipeline

• Data hazard detection and forwarding logic from values stored
between the stages



Maintaining PreciseMaintaining Precise

ExceptionsExceptions

• Pipelining FP instructions can cause out-

of-order completion

• Exceptions also a problem:

DIVF F0, F2, F4

ADDF F10, F10, F8

SUBF F12, F12, F14

– No data hazards

– What if DIVF exception occurs after ADDF

writes F10?



Four FP Exception SolutionsFour FP Exception Solutions

1. Settle for imprecise exceptions

– Some supercomputers still uses this approach

– IEEE floating point standard requires precise exceptions

– Some machine offer slow precise and fast imprecise exceptions

2. Buffer the results of all operations until previous instructions

complete

– Complex and expensive design (many comparators and large

MUX)

– History or future register file



Four FP Exception SolutionsFour FP Exception Solutions

3. Allow imprecise exceptions and get the handler to
clean up any miss

– Save PC + state about the interrupting instruction and all
out-of-order completed instructions

– The trap handler will consider the state modification caused
by finished instructions and prepare machine to resume
correctly

– Issues: consider the following example

Instruction1:    Long running, eventual exception

Instructions 2 … (n-1) :  Instructions that do not complete

Instruction n :  An instruction that is finished

– The compiler can simplify the problem by grouping FP
instructions so that the trap does not have to worry about
unrelated instructions



Four FP Exception SolutionsFour FP Exception Solutions

4. Allow instruction issue to continue only if
previous instruction are guaranteed to cause
no exceptions:

– Mainly applied in the execution phase

– Used on MIPS R4000 and Intel Pentium



Stalls/Instruction, FP PipelineStalls/Instruction, FP Pipeline



More FP Pipeline PerformanceMore FP Pipeline Performance

This figure (A.36 in the book) contains several errors in either graph

or data. Only take-home: result stalls are most common by far



Instruction Level ParallelismInstruction Level Parallelism

(ILP)(ILP)
• Overlap the execution of unrelated

instructions

• Both instruction pipelining and ILP
enhance instruction throughput not the
execution time of the individual
instruction

• Potential of IPL within a basic block is
very limited

– in “gcc” 17% of instructions are control
transfer meaning on average 5 instructions
per branch



Loops: Simple & CommonLoops: Simple & Common

for (i=1; i<=1000; i=i+1)

       x[i] = x[i] + y[i];

• Techniques like loop unrolling convert loop-level
parallelism into instruction-level parallelism
– statically by the compiler

– dynamically by hardware

• Loop-level parallelism can also be exploited using
vector processing

• IPL feasibility is mainly hindered by data and control
dependence among the basic blocks

• Level of parallelism is limited by instruction latencies



Major AssumptionsMajor Assumptions

• Basic MIPS integer pipeline

• Branches with one delay cycle

• Functional units are fully pipelined or replicated (as many times as the

pipeline depth)

– An operation of any type can be issued on every clock cycle and there are no

structural hazard

Instruction producing 
result 

Instruction using 
results 

Latency in 
clock cycles 

FP ALU op Another FP ALU op 3 

FP ALU op Store Double 2 

Load Double FP ALU op 1 

Load Double Store Double 0 

 



Motivating ExampleMotivating Example
Loop:  LD F0,x(R1) ;F0=vector element

       ADDD F4,F0,F2 ;add scalar from F2

       SD x(R1),F4 ;store result

       SUBI R1,R1,8 ;decrement pointer (DW)

       BNEZ R1,Loop ;branch R1!=zero

for (i=1000; i>0; i=i-1)

   x[i] = x[i] + s;

Loop:  LD F0,x(R1)

       stall

        ADDD F4,F0,F2

       stall

       stall

       SD x(R1),F4

       SUBI R1,R1,8

       stall

        BNEZ R1,Loop

       stall

Standard  Pipeline

execution

Loop:  LD F0,x(R1)

       SUBI R1,R1,8

       ADDD F4,F0,F2

       stall     ;F4 latency

       BNEZ R1,Loop

       SD x+8(R1),F4

Smart compiler

Sophisticated compiler optimization reduced

execution time from 10 cycles to only 6 cycles



Loop: LD   F0,x(R1)

ADDD  F4,F0,F2

SD   x(R1),F4 ;drop SUBI & BNEZ

LD   F6,x-8(R1)

ADDD  F8,F6,F2

SD   x-8(R1),F8 ;drop again

LD   F10,x-16(R1)

ADDD  F12,F10,F2

SD   x-16(R1),F12 ;drop again

LD   F14,x-24(R1)

ADDD  F16,F14,F2

SD   x-24(R1),F16

SUBI   R1,R1,#32   ;alter to 4*8

BNEZ   R1,LOOP

Loop:  LD F0,x(R1)

       ADDD F4,F0,F2

       SD x(R1),F4

       SUBI R1,R1,8

           BNEZ R1,Loop

Replicate loop body 4 times, will need cleanup

phase if loop iteration is not a multiple of 4

Loop UnrollingLoop Unrolling

• 6 cycles, but only 3 are loop

body

• Loop unrolling limits

overhead at the expense of a

larger code

– Eliminates branch delays

– Enable effective scheduling

• Use of different registers

needed to limit data hazard



Scheduling Unrolled LoopsScheduling Unrolled Loops
Cycle Instruction

1 Loop: LD   F0,x(R1)

3 ADDD  F4,F0,F2

6 SD   x(R1),F4 

7 LD   F6,x-8(R1)

9 ADDD  F8,F6,F2

12 SD   x-8(R1),F8

13 LD   F10,x-16(R1)

15 ADDD  F12,F10,F2

18 SD   x-16(R1),F12

19 LD   F14,x-24(R1)

21 ADDD  F16,F14,F2

24 SD   x-24(R1),F16

25 SUBI   R1,R1,#32

27 BNEZ   R1,LOOP

28 stall 

Cycle Instruction

1 Loop: LD   F0,x(R1)

2 LD   F6,x-8(R1)

3 LD   F10,x-16(R1)

4 LD   F14,x-24(R1)

5 ADDD  F4,F0,F2

6 ADDD  F8,F6,F2

7 ADDD  F12,F10,F2

8 ADDD  F16,F14,F

9 SD   x(R1),F4 

10 SD   x-8(R1),F8

11 SUBI   R1,R1,#32

12 SD   x+16(R1),F12

13 BNEZ   R1,LOOP

14 SD   x+8(R1),F1

Loop unrolling

exposes more

computation that

can be scheduled

to minimize the

pipeline stalls

Understanding

dependence

among

instructions is the

key for for

detecting and

performing the

transformation



Inter-instruction DependenceInter-instruction Dependence

• Determining how one instruction
depends on another is critical not only to
the scheduling process but also to
determining how much parallelism exists

• If two instructions are parallel they can
execute simultaneously in the pipeline
without causing stalls (assuming there is
not structural hazard)

• Two instructions that are dependent are
not parallel and their execution cannot
be reordered



Dependence ClassificationsDependence Classifications

• Data dependence (RAW)
– Transitive: i ! j ! k = i ! k

– Easy to determine for registers, hard for memory

• Does 100(R4) = 20(R6)?

• From different loop iterations, does 20(R6) = 20(R6)?

• Name dependence (register/memory reuse)
– Anti-dependence (WAR): Instruction j writes a register or

memory location that instruction i reads from and instruction i
is executed first

– Output dependence (WAW): Instructions i and j write the
same register or memory location; instruction ordering must
be preserved

• Control dependence, caused by conditional branching



Example: Name DependenceExample: Name Dependence
Loop:  LD F0,x(R1)

       ADDD F4,F0,F2

       SD x(R1),F4

       LD F0,x-8(R1)

       ADDD F4,F0,F2

       SD x-8(R1),F4

       LD F0,x-16(R1)

       ADDD F4,F0,F2

       SD x-16(R1),F4

       LD F0,x-24(R1)

       ADDD F4,F0,F2

       SD x-24(R1),F4

       SUBI R1,R1,#32

           BNEZ R1,Loop

Loop: LD   F0,x(R1)

ADDD  F4,F0,F2

SD   x(R1),F4 

LD   F6,x-8(R1)

ADDD  F8,F6,F2

SD   x-8(R1),F8

LD   F10,x-16(R1)

ADDD  F12,F10,F2

SD   x-16(R1),F12

LD   F14,x-24(R1)

ADDD  F16,F14,F2

SD   x-24(R1),F16

SUBI   R1,R1,#32

BNEZ   R1,LOOP

Register

renaming

• Again Name Dependencies are Hard for Memory Accesses

– Does 100(R4) = 20(R6)?

– From different loop iterations, does 20(R6) = 20(R6)?

• Compiler needs to know that R1 does not change ! 0(R1)!  -8(R1)!  -16(R1)!  -24(R1)

and thus no dependencies between some loads and stores so they could be moved


