
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

Design LanguagesDesign Languages

Practically everything adapted from slides by Peter J. Ashenden, VHDL Quick Start

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Abstraction Hierarchy ofAbstraction Hierarchy of

Digital DesignDigital Design
• Digital designers often employ abstraction hierarchy, which can

be expressed in two domains:

– Structural domain: Components are described in terms of an

interconnection of more primitive components

– Behavior domain: Components are described by defining the their

input/output responses by means of a procedure

Strcutural

Decomposition

Behavioral

Decomposition

Silicon

Circuit

Gate

Register

Chip

PMS

In
c
re

a
s
e
d
 c

o
m

p
e
x
it
y
 a

n
d
 d

e
ta

ils

Level Structural
Primitive

Behavior
Representation

PMS CPU, memories,
buses

Performance
specifications

Chip Microprocessor,
RAM, UART

I/O response,
algorithms

Register ALU, counter,
MUX

Truth table, state
table

Gate AND, OR, flip-
flop

Boolean
equations

Circuit Transistor, R, L,
and C

Differential
equations

Silicon Geometrical
objects

Process
specifications.

Design's Levels of AbstractionDesign's Levels of Abstraction

Simulation continues until

the event queue is empty

or stopped externally by

the designer

Design SimulatorDesign Simulator

• Device behavioral model is represented by procedure calls

• Events within the simulator are kept in a time-based queue

• Events stored as three-tuples (Module #, Pin #, New logic value)

• Depending on the behavioral model of a module, the handling of an

event usually trigger other events that will be inserted in the event queue

Module 2

Module 3

Module 1Module 0

100 ns

6

3

8

0, 6, 1

- - - - -

- - - - -

- - - - -

- - - - -

- - - - -

1, 8, 0

Event

Queue

Events

Time

0

- -

- -

- -

- -

- -

100

high level of

abstraction

FunctionalStructural

Geometric

“Y-chart” due to Gajski & Kahn

low level of

abstraction

Domains and Levels ofDomains and Levels of

ModelingModeling

Domains and Levels ofDomains and Levels of

ModelingModeling

FunctionalStructural

Geometric

Algorithm

(behavioral)

Register-Transfer

Language

Boolean Equation

Differential Equation

“Y-chart” due to Gajski & Kahn

Domains and Levels ofDomains and Levels of

ModelingModeling

FunctionalStructural

Geometric

Processor-Memory

Switch

Register-Transfer

Gate

Transistor

“Y-chart” due to Gajski & Kahn

Domains and Levels ofDomains and Levels of

ModelingModeling

FunctionalStructural

Geometric

Polygons

Sticks

Standard Cells

Floor Plan

“Y-chart” due to Gajski & Kahn

Hardware Design LanguagesHardware Design Languages

• A hardware design language provides
primitives for describing both structural and
behavioral models of the design

• Hardware design languages are useful in
– Documenting and modeling the design

– Ensuring design portability

• Every hardware design language is supported
by a simulator that helps in:
– Validating the design

– Mitigating the risk of design faults

– Avoiding expensive prototyping for complicated
hardware

VHDL &VHDL & Verilog Verilog

• VHDL and Verilog are the most famous

and widely used hardware design

language

• Focus on VHDL:

– Interfaces, Behavior, Structure, Test

Benches

– Analysis, Elaboration, Simulation, Synthesis

Modeling Digital SystemsModeling Digital Systems

• VHDL is for writing models of a system

• Reasons for modeling

– requirements specification

– documentation

– testing using simulation

– formal verification

– synthesis

• Goal

– most reliable design process, with minimum cost and time

– avoid design errors!

Modeling InterfacesModeling Interfaces

• Entity declaration

– describes the input/output ports of a module

entity reg4 is

port (d0, d1, d2, d3, en, clk : in bit;

q0, q1, q2, q3 : out bit);

end entity reg4;

entity name port names port mode (direction)

port typereserved words

punctuation

VHDL-87VHDL-87

• Omit entity at end of entity declaration

entity reg4 is

port (d0, d1, d2, d3, en, clk : in bit;

q0, q1, q2, q3 : out bit);

end reg4;

Modeling BehaviorModeling Behavior

• Architecture body

– describes an implementation of an entity

– may be several per entity

• Behavioral architecture

– describes the algorithm performed by the
module

– contains
• process statements, each containing

• sequential statements, including

• signal assignment statements and

• wait statements

Behavior ExampleBehavior Example

architecture behav of reg4 is

begin

storage : process is

variable stored_d0, stored_d1, stored_d2, stored_d3 : bit;

begin

if en = '1' and clk = '1' then

stored_d0 := d0;

 stored_d1 := d1;

 stored_d2 := d2;

 stored_d3 := d3;

end if;

q0 <= stored_d0 after 5 ns;

 q1 <= stored_d1 after 5 ns;

 q2 <= stored_d2 after 5 ns;

 q3 <= stored_d3 after 5 ns;

wait on d0, d1, d2, d3, en, clk;

end process storage;

end architecture behav;

Modeling StructureModeling Structure

• Structural architecture

– implements the module as a composition of

subsystems

– contains

• signal declarations, for internal interconnections

– the entity ports are also treated as signals

• component instances

– instances of previously declared entity/architecture pairs

• port maps in component instances

– connect signals to component ports

• wait statements

Structure ExampleStructure Example

int_clk

d0

d1

d2

d3

en

clk

q0

q1

q2

q3

bit0

d_latch

d

clk

q

bit1

d_latch

d

clk

q

bit2

d_latch

d

clk

q

bit3

d_latch

d

clk

q

gate

and2

a

b

y

Structure ExampleStructure Example

• First declare D-latch and and-gate entities and
architectures

entity d_latch is

port (d, clk : in bit; q : out bit);

end entity d_latch;

architecture basic of d_latch is

begin

latch_behavior : process is

begin

if clk = ‘1’ then

q <= d after 2 ns;

end if;

wait on clk, d;

end process latch_behavior;

end architecture basic;

entity and2 is

port (a, b : in bit; y : out bit);

end entity and2;

architecture basic of and2 is

begin

and2_behavior : process is

begin

y <= a and b after 2 ns;

wait on a, b;

end process and2_behavior;

end architecture basic;

Structure ExampleStructure Example

• Now use them to implement a register

architecture struct of reg4 is

signal int_clk : bit;

begin

bit0 : entity work.d_latch(basic)

port map (d0, int_clk, q0);

bit1 : entity work.d_latch(basic)

port map (d1, int_clk, q1);

bit2 : entity work.d_latch(basic)

port map (d2, int_clk, q2);

bit3 : entity work.d_latch(basic)

port map (d3, int_clk, q3);

gate : entity work.and2(basic)

port map (en, clk, int_clk);

end architecture struct;

Mixed Behavior and StructureMixed Behavior and Structure

• An architecture can contain both

behavioral and structural parts

– process statements and component

instances

• collectively called concurrent statements

– processes can read and assign to signals

• Example: register-transfer-level model

– data path described structurally

– control section described behaviorally

Mixed ExampleMixed Example

shift_reg

reg

shift_

adder
control_

section

multiplier multiplicand

product

Mixed ExampleMixed Example
entity multiplier is

port (clk, reset : in bit;

multiplicand, multiplier : in integer;

product : out integer);

end entity multiplier;

architecture mixed of mulitplier is

signal partial_product, full_product : integer;

signal arith_control, result_en, mult_bit, mult_load : bit;

begin

arith_unit : entity work.shift_adder(behavior)

port map (addend => multiplicand, augend => full_product,

sum => partial_product,

add_control => arith_control);

result : entity work.reg(behavior)

port map (d => partial_product, q => full_product,

en => result_en, reset => reset);

...

Mixed ExampleMixed Example
…

multiplier_sr : entity work.shift_reg(behavior)

port map (d => multiplier, q => mult_bit,

load => mult_load, clk => clk);

product <= full_product;

control_section : process is

-- variable declarations for control_section

-- …

begin

-- sequential statements to assign values to control signals

-- …

wait on clk, reset;

end process control_section;

end architecture mixed;

Test BenchesTest Benches

• Testing a design by simulation

• Use a test bench model

– an architecture body that includes an

instance of the design under test

– applies sequences of test values to inputs

– monitors values on output signals

• either using simulator

• or with a process that verifies correct operation

Test Bench ExampleTest Bench Example
entity test_bench is

end entity test_bench;

architecture test_reg4 of test_bench is

signal d0, d1, d2, d3, en, clk, q0, q1, q2, q3 : bit;

begin

dut : entity work.reg4(behav)

port map (d0, d1, d2, d3, en, clk, q0, q1, q2, q3);

stimulus : process is

begin

d0 <= ’1’; d1 <= ’1’; d2 <= ’1’; d3 <= ’1’; wait for 20 ns;

en <= ’0’; clk <= ’0’; wait for 20 ns;

en <= ’1’; wait for 20 ns;

clk <= ’1’; wait for 20 ns;

d0 <= ’0’; d1 <= ’0’; d2 <= ’0’; d3 <= ’0’; wait for 20 ns;

en <= ’0’; wait for 20 ns;

…

wait;

end process stimulus;

end architecture test_reg4;

Regression TestingRegression Testing

• Test that a refinement of a design is
correct

– that lower-level structural model does the
same as a behavioral model

• Test bench includes two instances of
design under test

– behavioral and lower-level structural

– stimulates both with same inputs

– compares outputs for equality

• Need to take account of timing
differences

Regression Test ExampleRegression Test Example

architecture regression of test_bench is

signal d0, d1, d2, d3, en, clk : bit;

signal q0a, q1a, q2a, q3a, q0b, q1b, q2b, q3b : bit;

begin

dut_a : entity work.reg4(struct)

port map (d0, d1, d2, d3, en, clk, q0a, q1a, q2a, q3a);

dut_b : entity work.reg4(behav)

port map (d0, d1, d2, d3, en, clk, q0b, q1b, q2b, q3b);

stimulus : process is

begin

d0 <= ’1’; d1 <= ’1’; d2 <= ’1’; d3 <= ’1’; wait for 20 ns;

en <= ’0’; clk <= ’0’; wait for 20 ns;

en <= ’1’; wait for 20 ns;

clk <= ’1’; wait for 20 ns;

…

wait;

end process stimulus;

...

Regression Test ExampleRegression Test Example

…

verify : process is

begin

wait for 10 ns;

assert q0a = q0b and q1a = q1b and q2a = q2b and q3a = q3b

report ”implementations have different outputs”

severity error;

wait on d0, d1, d2, d3, en, clk;

end process verify;

end architecture regression;

Design ProcessingDesign Processing

• Analysis

• Elaboration

• Simulation

• Synthesis

AnalysisAnalysis

• Check for syntax and semantic errors

– syntax: grammar of the language

– semantics: the meaning of the model

• Analyze each design unit separately

– entity declaration

– architecture body

– …

– best if each design unit is in a separate file

• Analyzed design units are placed in a library

– in an implementation dependent internal form

– current library is called work

ElaborationElaboration

• “Flattening” the design hierarchy

– create ports

– create signals and processes within
architecture body

– for each component instance, copy
instantiated entity and architecture body

– repeat recursively
• bottom out at purely behavioral architecture

bodies

• Final result of elaboration

– flat collection of signal nets and processes

Elaboration ExampleElaboration Example

int_clk

d0

d1

d2

d3

en

clk

q0

q1

q2

q3

bit0

d_latch

d

clk

q

bit1

d_latch

d

clk

q

bit2

d_latch

d

clk

q

bit3

d_latch

d

clk

q

gate

and2

a

b

y

reg4(struct)

Elaboration ExampleElaboration Example

int_clk

d0

d1

d2

d3

en

clk

q0

q1

q2

q3

bit0

bit1

bit2

bit3

gate

reg4(struct)
d_latch(basic)

d

clk

q

d_latch(basic)

d

clk

q

d_latch(basic)

d

clk

q

d_latch(basic)

d

clk

q

and2(basic)

a

b

y
process with variables and

statements

SimulationSimulation

• Execution of the processes in the elaborated
model

• Discrete event simulation
– time advances in discrete steps

– when signal values change—events

• A processes is sensitive to events on input
signals
– specified in wait statements

– resumes and schedules new values on output
signals
• schedules transactions

• event on a signal if new value different from old value

Simulation AlgorithmSimulation Algorithm

• Initialization phase

– each signal is given its initial value

– simulation time set to 0

– for each process

• activate

• execute until a wait statement, then suspend

– execution usually involves scheduling transactions on

signals for later times

Simulation AlgorithmSimulation Algorithm

• Simulation cycle

– advance simulation time to time of next transaction

– for each transaction at this time

• update signal value

– event if new value is different from old value

– for each process sensitive to any of these events, or whose

“wait for …” time-out has expired

• resume

• execute until a wait statement, then suspend

• Simulation finishes when there are no further

scheduled transactions

SynthesisSynthesis

• Translates register-transfer-level (RTL)

design into gate-level netlist

• Restrictions on coding style for RTL

model

• Tool dependent

Basic Design MethodologyBasic Design Methodology

Requirements

SimulateRTL Model

Gate-level

Model

Synthesize

Simulate Test Bench

ASIC or FPGA Place & Route

Timing

Model Simulate

