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Abstraction Hierarchy ofAbstraction Hierarchy of

Digital DesignDigital Design
• Digital designers often employ abstraction hierarchy, which can

be expressed in two domains:

– Structural domain: Components are described in terms of an

interconnection of more primitive components

– Behavior domain: Components are described by defining the their

input/output responses by means of a procedure
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Simulation continues until

the event queue is empty

or stopped externally by

the designer

Design SimulatorDesign Simulator

• Device behavioral model is represented by procedure calls

• Events within the simulator are kept in a time-based queue

• Events stored as three-tuples  (Module #, Pin #, New logic value)

• Depending on the behavioral model of a module, the handling of an

event usually trigger other events that will be inserted in the event queue
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Hardware Design LanguagesHardware Design Languages

• A hardware design language provides
primitives for describing both structural and
behavioral models of the design

• Hardware design languages are useful in
– Documenting and modeling the design

– Ensuring design portability

• Every hardware design language is supported
by a simulator that helps in:
– Validating the design

– Mitigating the risk of design faults

– Avoiding expensive prototyping for complicated
hardware



VHDL &VHDL & Verilog Verilog

• VHDL and Verilog are the most famous

and widely used hardware design

language

• Focus on VHDL:

– Interfaces, Behavior, Structure, Test

Benches

– Analysis, Elaboration, Simulation, Synthesis



Modeling Digital SystemsModeling Digital Systems

• VHDL is for writing models of a system

• Reasons for modeling

– requirements specification

– documentation

– testing using simulation

– formal verification

– synthesis

• Goal

– most reliable design process, with minimum cost and time

– avoid design errors!



Modeling InterfacesModeling Interfaces

• Entity declaration

– describes the input/output ports of a module

entity reg4 is

port ( d0, d1, d2, d3, en, clk : in bit;

q0, q1, q2, q3 : out bit );

end entity reg4;

entity name port names port mode (direction)

port typereserved words

punctuation



VHDL-87VHDL-87

• Omit entity at end of entity declaration

entity reg4 is

port ( d0, d1, d2, d3, en, clk : in bit;

q0, q1, q2, q3 : out bit );

end reg4;



Modeling BehaviorModeling Behavior

• Architecture body

– describes an implementation of an entity

– may be several per entity

• Behavioral architecture

– describes the algorithm performed by the
module

– contains
• process statements, each containing

• sequential statements, including

• signal assignment statements and

• wait statements



Behavior ExampleBehavior Example

architecture behav of reg4 is

begin

storage : process is

variable stored_d0, stored_d1, stored_d2, stored_d3 : bit;

begin

if en = '1' and clk = '1' then

stored_d0 := d0;

 stored_d1 := d1;

 stored_d2 := d2;

 stored_d3 := d3;

end if;

q0 <= stored_d0 after 5 ns;

 q1 <= stored_d1 after 5 ns;

 q2 <= stored_d2 after 5 ns;

 q3 <= stored_d3 after 5 ns;

wait on d0, d1, d2, d3, en, clk;

end process storage;

end architecture behav;



Modeling StructureModeling Structure

• Structural architecture

– implements the module as a composition of

subsystems

– contains

• signal declarations, for internal interconnections

– the entity ports are also treated as signals

• component instances

– instances of previously declared entity/architecture pairs

• port maps in component instances

– connect signals to component ports

• wait statements



Structure ExampleStructure Example
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Structure ExampleStructure Example

• First declare D-latch and and-gate entities and
architectures

entity d_latch is

port ( d, clk : in bit;  q : out bit );

end entity d_latch;

architecture basic of d_latch is

begin

latch_behavior : process is

begin

if clk = ‘1’ then

q <= d after 2 ns;

end if;

wait on clk, d;

end process latch_behavior;

end architecture basic;

entity and2 is

port ( a, b : in bit;  y : out bit );

end entity and2;

architecture basic of and2 is

begin

and2_behavior : process is

begin

y <= a and b after 2 ns;

wait on a, b;

end process and2_behavior;

end architecture basic;



Structure ExampleStructure Example

• Now use them to implement a register

architecture struct of reg4 is

signal int_clk : bit;

begin

bit0 : entity work.d_latch(basic)

port map ( d0, int_clk, q0 );

bit1 : entity work.d_latch(basic)

port map ( d1, int_clk, q1 );

bit2 : entity work.d_latch(basic)

port map ( d2, int_clk, q2 );

bit3 : entity work.d_latch(basic)

port map ( d3, int_clk, q3 );

gate : entity work.and2(basic)

port map ( en, clk, int_clk );

end architecture struct;



Mixed Behavior and StructureMixed Behavior and Structure

• An architecture can contain both

behavioral and structural parts

– process statements and component

instances

• collectively called concurrent statements

– processes can read and assign to signals

• Example: register-transfer-level model

– data path described structurally

– control section described behaviorally



Mixed ExampleMixed Example
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Mixed ExampleMixed Example
entity multiplier is

port ( clk, reset : in bit;

multiplicand, multiplier : in integer;

product : out integer );

end entity multiplier;

architecture mixed of mulitplier is

signal partial_product, full_product : integer;

signal arith_control, result_en, mult_bit, mult_load : bit;

begin

arith_unit : entity work.shift_adder(behavior)

port map ( addend => multiplicand,  augend => full_product,

sum => partial_product,

add_control => arith_control );

result : entity work.reg(behavior)

port map ( d => partial_product,  q => full_product,

en => result_en,  reset => reset );

...



Mixed ExampleMixed Example
…

multiplier_sr : entity work.shift_reg(behavior)

port map ( d => multiplier,  q => mult_bit,

load => mult_load,  clk => clk );

product <= full_product;

control_section : process is

-- variable declarations for control_section

-- …

begin

-- sequential statements to assign values to control signals

-- …

wait on clk, reset;

end process control_section;

end architecture mixed;



Test BenchesTest Benches

• Testing a design by simulation

• Use a test bench model

– an architecture body that includes an

instance of the design under test

– applies sequences of test values to inputs

– monitors values on output signals

• either using simulator

• or with a process that verifies correct operation



Test Bench ExampleTest Bench Example
entity test_bench is

end entity test_bench;

architecture test_reg4 of test_bench is

signal d0, d1, d2, d3, en, clk, q0, q1, q2, q3 : bit;

begin

dut : entity work.reg4(behav)

port map ( d0, d1, d2, d3, en, clk, q0, q1, q2, q3 );

stimulus : process is

begin

d0 <= ’1’;  d1 <= ’1’;  d2 <= ’1’;  d3 <= ’1’;  wait for 20 ns; 

en <= ’0’;  clk <= ’0’;  wait for 20 ns;

en <= ’1’;  wait for 20 ns;

clk <= ’1’;  wait for 20 ns;

d0 <= ’0’;  d1 <= ’0’;  d2 <= ’0’;  d3 <= ’0’;  wait for 20 ns;

en <= ’0’;  wait for 20 ns;

…

wait;

end process stimulus;

end architecture test_reg4;



Regression TestingRegression Testing

• Test that a refinement of a design is
correct

– that lower-level structural model does the
same as a behavioral model

• Test bench includes two instances of
design under test

– behavioral and lower-level structural

– stimulates both with same inputs

– compares outputs for equality

• Need to take account of timing
differences



Regression Test ExampleRegression Test Example

architecture regression of test_bench is

signal d0, d1, d2, d3, en, clk : bit;

signal q0a, q1a, q2a, q3a, q0b, q1b, q2b, q3b : bit;

begin

dut_a : entity work.reg4(struct)

port map ( d0, d1, d2, d3, en, clk, q0a, q1a, q2a, q3a );

dut_b : entity work.reg4(behav)

port map ( d0, d1, d2, d3, en, clk, q0b, q1b, q2b, q3b );

stimulus : process is

begin

d0 <= ’1’;  d1 <= ’1’;  d2 <= ’1’;  d3 <= ’1’;  wait for 20 ns; 

en <= ’0’;  clk <= ’0’;  wait for 20 ns;

en <= ’1’;  wait for 20 ns;

clk <= ’1’;  wait for 20 ns;

…

wait;

end process stimulus;

...



Regression Test ExampleRegression Test Example

…

verify : process is

begin

wait for 10 ns;

assert q0a = q0b and q1a = q1b and q2a = q2b and q3a = q3b

report ”implementations have different outputs”

severity error;

wait on d0, d1, d2, d3, en, clk;

end process verify;

end architecture regression;



Design ProcessingDesign Processing

• Analysis

• Elaboration

• Simulation

• Synthesis



AnalysisAnalysis

• Check for syntax and semantic errors

– syntax: grammar of the language

– semantics: the meaning of the model

• Analyze each design unit separately

– entity declaration

– architecture body

– …

– best if each design unit is in a separate file

• Analyzed design units are placed in a library

– in an implementation dependent internal form

– current library is called work



ElaborationElaboration

• “Flattening” the design hierarchy

– create ports

– create signals and processes within
architecture body

– for each component instance, copy
instantiated entity and architecture body

– repeat recursively
• bottom out at purely behavioral architecture

bodies

• Final result of elaboration

– flat collection of signal nets and processes



Elaboration ExampleElaboration Example
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Elaboration ExampleElaboration Example
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SimulationSimulation

• Execution of the processes in the elaborated
model

• Discrete event simulation
– time advances in discrete steps

– when signal values change—events

• A processes is sensitive to events on input
signals
– specified in wait statements

– resumes and schedules new values on output
signals
• schedules transactions

• event on a signal if new value different from old value



Simulation AlgorithmSimulation Algorithm

• Initialization phase

– each signal is given its initial value

– simulation time set to 0

– for each process

• activate

• execute until a wait statement, then suspend

– execution usually involves scheduling transactions on

signals for later times



Simulation AlgorithmSimulation Algorithm

• Simulation cycle

– advance simulation time to time of next transaction

– for each transaction at this time

• update signal value

– event if new value is different from old value

– for each process sensitive to any of these events, or whose

“wait for …” time-out has expired

• resume

• execute until a wait statement, then suspend

• Simulation finishes when there are no further

scheduled transactions



SynthesisSynthesis

• Translates register-transfer-level (RTL)

design into gate-level netlist

• Restrictions on coding style for RTL

model

• Tool dependent



Basic Design MethodologyBasic Design Methodology

Requirements

SimulateRTL Model

Gate-level

Model
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Simulate Test Bench

ASIC or FPGA Place & Route

Timing

Model Simulate


