
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

CompilersCompilers

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

Typical CompilationTypical Compilation

Let's assume that A is an array of word-length integers and that the compiler has
associated the variables g, h and i with the registers $s1, $s2 and $s4. Let's assume
that the starting address, or base address, of the array is in $s3. The following is a
possible compilation of a segment of a C program to MIPS assembly instructions:

g = h + A[i];

First convert word-index to byte-index:

add $t1, $s4, $s4 # Temp reg $t1 = 2 * i
add $t1, $t1, $t1 # Temp reg $t1 = 4 * i

To get the address of A[i], we need to add $t1 to the base of A in $s3:

add $t1, $t1, $s3 # $t1 = address of A[i] (4 * i + $s3)

Now we can use that address to load A[i] into a temporary register:

lw $t0, 0($t1) # Temporary register $t0 gets A[i]

Finally add A[i] to h and place the sum in g:

add $s1, $s2, $t0 # g = h + A[i]

Compiling Array IndexingCompiling Array Indexing

Assuming the five variables f, g, h, i,
and j correspond to the five registers
$s0 through $s4, what is the
compiled MIPS code for the
following C if statement:

if (i == j) f = g + h; else f = g - h;

i == j?

f =g– hf = g + h

Else:

Exit:

i=j i! j

bne $s3, $s4, Else # go to Else if i ! j

add $s0, $s1, $s2 # f = g + h (skipped if i ! j)

j Exit

Else: sub $s0, $s1, $s2 # f = g - h (skipped if i = j)

Exit:

MIPS:

Compiling if-then-elseCompiling if-then-else

Assume that i, j and k correspond to $s3 through $s5, and the base of the
array “save” is in $s6. what is the compiled MIPS code for the following C
segment:

while (save[i] == k) i = i + j;

The first step is to load save[i] into a temporary register

Loop: add $t1, $s3, $s3 # Temp reg $t1 = 2 * i
add $t1, $t1, $t1 # Temp reg $t1 = 4 * i
add $t1, $t1, $s6 # $t1 = address of save[i]
lw $t0, 0($t1) # Temp reg $t0 = save[i]

The next instruction performs the loop test, exiting if save[i] ! k

bne $t0, $s5, Exit # go to Exit if save[i] ! k

Finally reaching the loop end
j Loop # go back to the beginning of loop

Exit:

MIPS:

The next instruction add j to i:

 add $s3, $s3, $s4 # i = i + j

Compiling a while LoopCompiling a while Loop

Major Types of OptimizationMajor Types of Optimization
Optimization Name Explanation Frequency

High –level At or near source level; machine indep.

Procedure integration Replace procedure call by procedure body N.M

Local Within straight line code

Common sub- expression

elimination

Replace two instances of the same computation by

single copy

18%

Constant propagation
Replace all instances of a variable that is assigned a
constant with the constant

22%

Stack height reduction Rearrange expression tree to minimize resources

needed for expression evaluation

N.M

Global Across a branch

Global common sub

expression elimination

Same as local, but this version crosses branches 13%

Copy propagation Replace all instances of a variable A that has
been assigned X (i.e., A = X) with X

11%

Code motion Remove code from a loop that computes same value
each iteration of the loop

16%

Induction variable

elimination

Simplify/eliminate array –addressing calculations

within loops

2%

Machine-dependant Depends on machine knowledge

Strength reduction Many examples, such as replace multiply by a

constant with adds and shifts

N.M

Pipeline Scheduling
Reorder instructions to improve pipeline performance

N.M.

Measurements taken on MIPS

P
ro

g
ra

m
 a

n
d

 C
o

m
p

il
e

r
O

p
ti

m
iz

a
ti

o
n

 L
e

v
e

l

Level 0: non-optimized code

Level 1: local optimization

Level 2: global optimization, s/w pipelining

Level 3: adds procedure integration

Effect of OptimizationEffect of Optimization

Multimedia InstructionsMultimedia Instructions

• Small vector processing targeting multimedia
– Intel’s MMX, PowerPC AltiVec, Sparc VIS, MIPS MDMX

– N 1/Nth-word vectors packed into one register

– Same operations performed on all N vectors

• Plus
– Little additional ALU hardware

– Utilize under-used hardware resources

• Minus
– Extra pack & unpack if data isn’t already arranged perfectly

– Limited vector sizes, difficult to compile for general code

• Result
– Mostly used in hand-coded libraries

• Compare to general vector processing
– Hide memory latency in vector access

– Strided processing, gather/scatter addressing

Effect of Compilers on ISAEffect of Compilers on ISA

• Promote regularity
– Limit # register formats and variability of operands

– Orthogonality in operations, registers & addressing

• Provide primitives, not solutions
– Common features over specific language features

– Special-purpose instructions often unusable (except through
hand-assembly-coded libraries)

• Simplify trade-offs among alternatives
– Simplify the analysis of special features such as cache and

pipeline

– Allow simultaneous activities to promote optimization

Assembler

Assembly language program

Compiler

C program

Linker

Executable: Machine language program

Loader

Memory

Object: Machine language module Object: Library routine (machine language)

- Place code & data modules
 symbolically in memory

-Determine the address of data &
 instruction labels

-Patch both internal & external ref.

Object files for Unix typically contains:

Header: size & position of components

Text segment: machine code

Data segment: static and dynamic variables

Relocation info: identify absolute memory ref.

Symbol table: name & location of labels,
 procedures and variables

Debugging info: mapping source to object
 code, break points, etc.

Linker

Starting a ProgramStarting a Program

Assuming the value in $gp is 1000
8000hex

Executable file header
Text size 300hex

Data size 50hex

Text segment Address Instruction
0040 0000hex lw $a0, 8000hex($gp)
0040 0004hex jal 40 0100hex

… …
0040 0100hex lw $a1, 8020hex($gp)
0040 0104hex jal 40 0000hex

… …
Data segment Address

1000 0000hex (X)
… …

1000 0020hex (Y)
… …

Object file header
Name Procedure A

Text size 100hex

Data size 20hex

Text segment Address Instruction
0 lw $a0, 0($gp)
4 jal 0
… …

Data segment 0 (X)
…. …

Relocation Info Address Instruction type Dependency
0 lw X
4 jal B

Symbol table Label Address
X -
B -

Linking Object FilesLinking Object Files

Object file header
Name Procedure B

Text size 200hex

Data size 30hex

Text segment Address Instruction
0 lw $a0, 0($gp)
4 jal 0
… …

Data segment 0 (Y)
…. …

Relocation Info Address Instruction type Dependency
0 lw Y
4 jal A

Symbol table Label Address
Y -
A -

Loading Executable ProgramLoading Executable Program

$sp

$gp

0040 0000
hex

0

1000 0000 hex

Text

Static data

Dynamic data

Stack
7fff ffff

hex

1000 8000
hex

pc

Reserved

• To load an executable, the
operating system follows
these steps:

1. Read the executable file header
to determine the size of text and
data segments

2. Create an address space large
enough for the text and data

3. Copy the instructions and data
from the executable file into
memory

4. Copy the parameters (if any) to
the main program onto the stack

5. Initialize the machine registers
and sets the stack pointer to
the first free location

6. Jump to a start-up routines that
copies the parameters into the
argument registers and calls the
main routine of the program

