
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

Cache (2)Cache (2)

Most slides adapted from David Patterson. Some from Mohomed Younis

Classifying Cache MissesClassifying Cache Misses

• Compulsory
– First access to a block not in cache

– Also called cold start or first reference misses

– (Misses in even an Infinite Cache)

• Capacity
– If the cache cannot contain all needed blocks

– Due to blocks discarded and re-retrieved

– (Misses in Fully Associative Cache)

• Conflict
– Set associative or direct mapped: too many blocks

in set

– Also called collision or interference

– (Misses in N-way Associative Cache)

Improving Cache PerformanceImproving Cache Performance

• Capacity misses can be damaging to the
performance (excessive main memory
access)

• Increasing associativity, cache size and
block width can reduces misses

• Changing cache size affects both
capacity and conflict misses since it
spreads out references to more blocks

• Some optimization techniques that
reduces miss rate also increases hit
access time

Conflict Based on SPEC92

Miss Rate DistributionMiss Rate Distribution

• Compulsory misses are small compared to other

categories

• Capacity misses diminish with increased cache size

• Increasing associativity limits the placement conflicts

Cache Size (KB)

M
is

s
R
a
te

p
e
r

T
y
p
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Techniques for ReducingTechniques for Reducing

MissesMisses

1. Reducing Misses via Larger Block Size

2. Reducing Misses via Higher Associativity

3. Reducing Misses via Victim Cache

4. Reducing Misses via Pseudo-Associativity

5. Reducing Misses by H/W Prefetching Instr. and Data

6. Reducing Misses by S/W Prefetching Data

7. Reducing Misses by Compiler Optimizations

CPUtime = IC ! CPI
Execution

+
Memory accesses

Instruction
!Miss rate!Miss penalty

"

$
%
!Clock cycle time

Reduce Misses via LargerReduce Misses via Larger

Block SizeBlock Size

• Larger block sizes reduces compulsory misses
(principle of spatial locality)

• Conflict misses increase for larger block sizes since
cache has fewer blocks

• The miss penalty usually outweighs the decrease of
the miss rate making large block sizes less favored

2:1 Cache Rule:

Miss Rate for direct

mapped cache of size N

= Miss Rate 2-way

 cache size N/2

Reduce Misses via HigherReduce Misses via Higher

AssociativityAssociativity

• Greater associativity comes at the expense of
larger hit access time

• Hardware complexity grows for high
associativity and clock cycle increases

Cache Size (KB)

M
is

s
R
at

e

p
e
r

T
y
p
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way

4-way

8-way

Capacity

Compulsory

ExampleExample

Associativity Cache Size
(KB) 1-way 2-way 4-way 8-way

1 7.65 6.60 6.22 5.44

2 5.90 4.90 4.62 4.09

4 4.60 3.95 3.57 3.19

8 3.30 3.00 2.87 2.59

16 2.45 2.20 2.12 2.04

32 2.00 1.80 1.77 1.79

64 1.70 1.60 1.57 1.59

128 1.50 1.45 1.42 1.44

Assume hit time is 1 clock cycle and average miss penalty is 50 clock cycles for

a direct mapped cache. The clock cycle increases by a factor of 1.10 for 2-

way, 1.12 for 4-way, 1.14 for 8-way associative cache. Compare the average

memory access based on the previous figure miss rates

High associativity becomes

a negative aspect

A good size of direct mapped cache can

be very efficient given its simplicity

Victim Cache ApproachVictim Cache Approach
CPU

address

Data Data

in out

Write

buffer

Lower level memory

Victim cache

=?

=?

Data
Tag

• Combines fast hit time of direct
mapped yet still avoids conflict misses
– Adds small fully asssociative cache between the direct

mapped cache and memory to place data discarded from
cache

– Jouppi [1990]: 4-entry victim cache removed 20% to 95% of
conflicts for a 4 KB direct mapped data cache

– Technique is used in Alpha, HP machines and does not
impair the clock rate

Pseudo-AssociativityPseudo-Associativity

MechanismMechanism
• Combine fast hit time of Direct Mapped and

lower conflict misses of 2-way set associative

• Divide cache: on a miss, check other half of
cache to see if there, if so have a pseudo-hit

• Simplest implementation inverts the index field
MSB to find the other pseudo set

• To limit the impact of hit time variability on
performance, swap block contents

• Drawback: CPU pipeline is hard if hit takes 1
or 2 cycles
– Better for caches not tied directly to processor (L2)

– Used in MIPS R1000 L2 cache, similar in
UltraSPARC

H/W Pre-fetching ofH/W Pre-fetching of

Instructions & DataInstructions & Data
• Hardware pre-fetches instructions and data while handing other

cache misses

– Assume pre-fetched items will be referenced shortly

• Pre-fetching relies on having extra memory bandwidth that can be
used without penalty

• Examples of Instruction Pre-fetching:

– Alpha 21064 fetches 2 blocks on a miss

– Extra block placed in “stream buffer”

– On miss check stream buffer

• Works with data blocks too:

– Jouppi [1990] 1 data stream buffer got 25% misses from 4KB
cache; 4 streams got 43%

– Palacharla & Kessler [1994] for scientific programs for 8
streams got 50% to 70% of misses from 2 64KB, 4-way set
associative caches

!

Average memory access time = Hit time + Miss Rate"

(Prefetch hit rate + (1#Prefetch hit rate)"Miss penalty)

for (i = 0; i < 3; i = i+1)

 for (j = 0; j < 100; j = j+1)

 a[i][j] = b[j][0] * b[j+1][0];

for (j = 0; j < 100; j = j+1)

 pre-fetch (b[i+7][0]);

 a[0][j] = b[j][0] * b[j+1][0];

 for (i = 1; i < 3; i = i+1)

 pre-fetch (a[i][j+7]);

 a[i-1][j] = b[j][0] * b[j+1][0];

Software Pre-fetching DataSoftware Pre-fetching Data

• Uses special instructions to pre-fetch data:

– Load data into register (HP PA-RISC loads)

– Cache Pre-fetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)

• Special pre-fetching instructions cannot cause faults (undesired exceptions) since

it is a form of speculative execution

• Makes sense if the processor can proceeds without blocking for a cache access

(lock-free cache)

• Loops are typical target for pre-fetching after unrolling (miss penalty is small) or

after applying software pipelining (miss penalty is large)

• Issuing Pre-fetch Instructions takes time

– Is cost of pre-fetch issues < savings in reduced misses?

– Higher superscalar reduces difficulty of issue bandwidth

Compiler-based CacheCompiler-based Cache

OptimizationsOptimizations
• Complier-based cache optimization reduces the miss rate without

any hardware change

• McFarling [1989] reduced caches misses by 75% (8KB direct
mapped / 4 byte blocks)

For Instructions

– Reorder procedures in memory to reduce conflict

– Profiling to determine likely conflicts among groups of
instructions

For Data

– Merging Arrays: improve spatial locality by single array of
compound elements vs. two arrays

– Loop Interchange: change nesting of loops to access data in
order stored in memory

– Loop Fusion: Combine two independent loops that have same
looping and some variables overlap

– Blocking: Improve temporal locality by accessing “blocks” of
data repeatedly vs. going down whole columns or rows

Merging Arrays:

/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

• Reduces misses by improving spatial locality through combined arrays that
are accessed simultaneously

Loop Interchange:

/* Before */

for (k = 0; k < 100; k = k+1)

 for (j = 0; j < 100; j = j+1)

 for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

 for (i = 0; i < 5000; i = i+1)

 for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

• Sequential accesses instead of striding through memory every 100 words;
improved spatial locality

ExamplesExamples

/* Before */

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1) {

a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];

}

Accessing array “a” and “c” would have caused twice the number of misses

without loop fusion

Loop Fusion ExampleLoop Fusion Example

• Some programs have separate sections of code that access the

same arrays (performing different computation on common data)

• Fusing multiple loops into a single loop allows the data in cache

to be used repeatedly before being swapped out

• Loop fusion reduces missed through improved temporal locality

(rather than spatial locality in array merging and loop interchange)

Blocking ExampleBlocking Example
/* Before */

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1) {

 r = 0;

 for (k = 0; k < N; k = k+1)

r = r + y[i][k] * z[k][j];

 x[i][j] = r;

 };

• Two Inner Loops:

– Read all NxN elements of z[]

– Read N elements of 1 row of y[] repeatedly

– Write N elements of 1 row of x[]

• Capacity Misses a function of N & Cache Size:

– 3 ! N ! N ! 4 bytes => no capacity misses;

• Idea: compute on B ! B sub-matrix that fits

• B called Blocking Factor

• Memory words accessed

 2N3 + N2 ! 2N3/B +N2

• Conflict misses can go
down too

• Blocking is also useful for
register allocation

/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

 for (j = jj; j < min(jj+B-1,N); j = j+1) {

 r = 0;

 for (k = kk; k < min(kk+B-1,N); k = k+1) {

r = r + y[i][k] * z[k][j];};

 x[i][j] = x[i][j] + r;

 };

Blocking ExampleBlocking Example

Blocking FactorBlocking Factor

• Traditionally blocking is used to reduce
capacity misses relying on high associativity to
tackle conflict misses

• Choosing smaller blocking factor than the
cache capacity can also reduce conflict misses
(fewer words are active in cache)

Lam et al [1991] a blocking factor of 24 had a fifth the misses compared to a factor of 48

despite both fit in cache

Efficiency of Compiler-BasedEfficiency of Compiler-Based

Cache Opt.Cache Opt.

CPUtime = IC ! CPI
Execution

+
Memory accesses

Instruction
!Miss rate!Miss penalty

"

$
%
!Clock cycle time

Reducing Miss PenaltyReducing Miss Penalty

• Reducing miss penalty can be as effective as the reducing miss rate

• With the gap between the processor and DRAM widening, the relative

cost of the miss penalties increases over time

• Seven techniques

– Read priority over write on miss

– Sub-block placement

– Merging write buffer

– Victim cache

– Early Restart and Critical Word First on miss

– Non-blocking Caches (Hit under Miss, Miss under Miss)

– Second Level Cache

• Can be applied recursively to Multilevel Caches

– Danger is that time to DRAM will grow with multiple levels in between

– First attempts at L2 caches can make things worse, since increased

worst case is worse

Read Priority over Write on MissRead Priority over Write on Miss
• Write through with write buffers offer RAW conflicts with main memory reads on

cache misses

• If simply wait for write buffer to empty, might increase read miss penalty (old MIPS

1000 by 50%)

• Check write buffer contents before read; if no conflicts, let the memory access

continue

Processor
Cache

Write Buffer

DRAM

!Write Back?

" Read miss replacing dirty block

" Normal: Write dirty block to memory, and then do the read

" Instead copy the dirty block to a write buffer, then do the read, and then

 do the write

" CPU stall less since restarts as soon as do read

Sub-block PlacementSub-block Placement
• Originally invented to reduce tag storage while avoiding the increased miss penalty

caused by large block sizes

• Enlarge the block size while dividing each block into smaller units (sub-blocks) and

thus does not have to load full block on a miss

• Include valid bits per sub-block to indicate the status of the sub-block (in cache or

not)

Valid Bits

Buffer

is full

Consolidation

free up space

Extend the concept of sub-block by optimizing the write buffer handling

Merging Write BufferMerging Write Buffer

Victim Cache ApproachVictim Cache Approach

CPU

address

Data Data

in out

Write

buffer

Lower level memory

Victim cache

=?

=?

Data
Tag

• Lower both miss rate

• Reduce average miss penalty

• Slightly extend the worst case miss penalty

block

Early Restart and CriticalEarly Restart and Critical

Word FirstWord First
• Don’t wait for full block to be loaded before

restarting CPU
– Early restart

• As soon as the requested word of the block arrives, send it
to the CPU and let the CPU continue execution

– Critical Word First
• Request the missed word first from memory

• Also called wrapped fetch and requested word first

• Complicates cache controller design

• CWF generally useful only in large blocks

• Given spatial locality programs tend to want
next sequential word, limits benefit

Non-blocking CachesNon-blocking Caches

• Early restart still waits for the requested word to arrive before the

CPU can continue execution

• For machines that allows out-of-order execution using a

scoreboard or a Tomasulo-style control the CPU should not stall

on cache misses

• “Non-blocking cache” or “lock-free cache” allows data cache to

continue to supply cache hits during a miss

• “hit under miss” reduces the effective miss penalty by working

during miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss” may further lower

the effective miss penalty by overlapping multiple misses

– Significantly increases the complexity of the cache controller

as there can be multiple outstanding memory accesses

– Requires multiple memory banks (otherwise cannot support)

– Pentium Pro allows 4 outstanding memory misses

Benchmark

R
a

ti
o

 o
f

th
e

 a
v
e

ra
g

e
 m

e
m

o
ry

 s
ta

ll
ti
m

e
Performance of Non-blockingPerformance of Non-blocking

CachesCaches

Second Level CacheSecond Level Cache

• The previous techniques reduce the impact of
the miss penalty on the CPU
– L2 cache handles the cache-memory interface

• Measuring cache performance

• Local miss rate
– misses in this cache divided by the total number of

memory accesses to this cache (MissRateL2)

• Global miss rate (& biggest penalty!)
– misses in this cache divided by the total number of

memory accesses generated by the CPU
(MissRateL1 ! MissRateL2)

!

AMAT = HitTimeL1 + MissRateL1 "MissPenaltyL1

= HitTimeL1 + MissRateL1 " (HitTimeL2 + MissRateL2 "MissPenaltyL2)

(Global miss rate close to single level cache rate provided L2 >> L1)

Local Local vs vs Global MissesGlobal Misses

