
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

Cache & MemoryCache & Memory

Most slides adapted from David Patterson. Some from Mohomed Younis

Second Level CacheSecond Level Cache

• The previous techniques reduce the impact of
the miss penalty on the CPU
– L2 cache handles the cache-memory interface

• Measuring cache performance

• Local miss rate
– misses in this cache divided by the total number of

memory accesses to this cache (MissRateL2)

• Global miss rate (& biggest penalty!)
– misses in this cache divided by the total number of

memory accesses generated by the CPU
(MissRateL1 ! MissRateL2)

!

AMAT = HitTimeL1 + MissRateL1 "MissPenaltyL1

= HitTimeL1 + MissRateL1 " (HitTimeL2 + MissRateL2 "MissPenaltyL2)

(Global miss rate close to single level cache rate provided L2 >> L1)

Local Local vs vs Global MissesGlobal Misses

Block size of second-level cache (byte)

R
e

la
ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

• 32 bit bus
• 512KB cache

L2 Cache ParametersL2 Cache Parameters

• L1 cache directly affects
the processor design
and clock cycle: should
be simple and small

• Bulk of optimization
techniques can go easily
to L2 cache

• Miss-rate reduction
more practical for L2

• Considering the L2
cache can improve the
L1 cache design,
– e.g. use write-through if

L2 cache applies write-
back

Average Access Time = Hit Time x (1 - Miss Rate) + Miss Time x Miss Rate

Reducing Hit TimeReducing Hit Time

• Hit rate is typically very high compared to miss rate
– any reduction in hit time is magnified

• Hit time critical: affects processor clock rate

• Three techniques to reduce hit time:
– Simple and small caches

– Avoid address translation during cache indexing

– Pipelining writes for fast write hits

Simple and small caches

• Design simplicity limits control logic complexity and
allows shorter clock cycles

• On-chip integration decreases signal propagation
delay, thus reducing hit time
– Alpha 21164 has 8KB Instruction and 8KB data cache and

96KB second level cache to reduce clock rate

Avoiding Address TranslationAvoiding Address Translation

• Send virtual address to cache?

– Called Virtually Addressed Cache or just Virtual
Cache vs. Physical Cache

– Every time process is switched logically must flush
the cache; otherwise get false hits

• Cost is time to flush + “compulsory” misses from empty
cache

– Dealing with aliases (sometimes called synonyms)
• Two different virtual addresses map to same physical

address causing unnecessary read misses or even RAW

– I/O must interact with cache, so need virtual
address

SolutionsSolutions

• Solution to aliases
– HW guarantees that every cache block has

unique physical address (simply check all
cache entries)

– SW guarantee: lower n bits must have same
address so that it overlaps with index; as
long as covers index field & direct mapped,
they must be unique; called page coloring

• Solution to cache flush
– Add process identifier tag that identifies

process as well as address within process:
cannot get a hit if wrong process

Impact of Using Process IDImpact of Using Process ID

• Miss rate vs. virtually
addressed cache
size of a program
measured three
ways:
– Without process

switches
(uniprocessor)

– With process
switches using a PID
tag (PID)

– With process
switches but without
PID (purge)

Virtually Addressed CachesVirtually Addressed Caches

CPU

TB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$

TB

MEM

VA

VA

PA

Virtually Addressed Cache
Translate only on miss

Synonym Problem

CPU

$ TB

MEM

VA

PA
Tags

PA

Overlap $ access
with VA translation:
requires $ index to

remain invariant
across translation

VA
Tags

L2 $

VA: Virtual address TB: Translation buffer PA: Page address

Indexing via PhysicalIndexing via Physical

AddressesAddresses
• If index is physical part of address, can start tag

access in parallel with translation

• To get the best of the physical and virtual caches, use
the page offset (not affected by the address
translation) to index the cache

• The drawback is that direct-mapped caches cannot be
bigger than the page size (typically 4-KB)

• To support bigger caches and use same technique:

– Use higher associativity since the tag size gets smaller
– OS implements page coloring since it will fix a few least

significant bits in the address (move part of the index to the
tag)

“Delayed Write Buffer”; must be
checked on reads; either complete
write or read from buffer

Pipeline Tag Check
and Update Cache
as separate stages;
current write tag
check & previous
write cache update

Pipelined Cache WritesPipelined Cache Writes

• In cache read, tag check and block reading are
performed in parallel while writing requires validating
the tag first

• Tag Check can be performed in parallel with a
previous cache update

Cache Optimization SummaryCache Optimization Summary

Technique MR MP HT Complexity

Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Pre-fetching of Instr/Data + 2
Compiler Controlled Pre-fetching + 3
Compiler Reduce Misses + 0

Priority to Read Misses + 1
Sub-block Placement + + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level Caches + 2

Small & Simple Caches – + 0
Avoiding Address Translation + 2
Pipelining Writes + 1

m
is

s
 r

a
te

h
it

ti

m
e

m
is

s
p

e
n

a
lt

y

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-40 ns

Main Memory
M Bytes
70ns-1us

Disk
G Bytes
ms

Capacity
Access Time

Tape
infinite
sec-min

Registers

Cache

Main Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Transfer Unit

Prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Memory HierarchyMemory Hierarchy

 Cache Virtual memory

Block " Page

Cache miss " page fault

Block " Address
addressing translation

Virtual MemoryVirtual Memory

• Using virtual addressing,
main memory plays the
role of cache for disks

• The virtual space is
much larger than the
physical memory space

• Physical main memory
contains only the active
portion of the virtual
space

• Address space can be
divided into fixed size
(pages) or variable size
(segments) blocks

Physical addresses

Disk addresses

Virtual addresses

Address translation

 Cache Virtual memory

Block " Page

Cache miss " page fault

Block " Address
addressing translation

Virtual MemoryVirtual Memory

• Advantages
– Allows efficient and safe

data sharing of memory
among multiple programs

– Moves programming
burdens of a small, limited
amount of main memory

– Simplifies program
loading and avoid the
need for contiguous
memory block

– allows programs to be
loaded at any physical
memory location

Physical addresses

Disk addresses

Virtual addresses

Address translation

Virtual AddressingVirtual Addressing

• Page faults are costly and take millions of cycles to
process (disks are slow)

• Optimization Strategies:
– Pages should be large enough to amortize the access time

– Fully associative placement of pages reduces page fault rate

– Software-based so can use clever page placement

– Write-through can make writing very time consuming (use
copy back)

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

Hardware supportedPage TablePage Table

• Page table:
– Resides in main

memory

– One entry per virtual
page

– No tag is requires since
it covers all virtual
pages

– Point directly to
physical page

– Table can be very large

– Operating sys. may
maintain one page
table per process

– A dirty bit is used to
track modified pages
for copy back

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not

present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Page FaultsPage Faults

• A page fault happens when the valid bit of a virtual page is off

• A page fault generates an exception to be handled by the
operating system to bring the page to main memory from a disk

• The operating system creates space for all pages on disk and
keeps track of the location of pages in main memory and disk

• Page location on disk can be stored in page table or in an
auxiliary structure

• LRU page replacement
strategy is the most common

• Simplest LRU implementation
uses a reference bit per page
and periodically reset
reference bits

Physical memory

Disk storage

Valid

1

1

1

1

0

1

1

0

1

1

0

1

Page table

Virtual page

number

Physical page or

disk address

MB 4
entry table page

bytes
 2 entries table page 2 table page of Size 220

=!=

With a 32-bit virtual address, 4-KB pages, and 4 bytes per page table entry:

Optimizing Page Table SizeOptimizing Page Table Size

20

12

32

2
2

2
entries table page of Number ==

• Optimization techniques:
– Keep bound registers to limit the size of page table for given

process in order to avoid empty slots

– Store only physical pages and apply hashing function of the
virtual address (inverted page table)

– Use multi-level page table to limit size of the table residing in
main memory

– Allow paging of the page table

– Cache the most used pages " Translation Look-aside Buffer

32-bit address:

P1 index P2 index page offest

10 10 12

4 bytes

4 bytes

4KB
1K
PTEs

° 2 GB virtual address space

° 4 MB of PTE2

– paged, holes

° 4 KB of PTE1

Inverted page table can be the only
practical solution for huge address
space, e.g 64-bit address space

Multi-Level Page TableMulti-Level Page Table

Translation Look-aside BufferTranslation Look-aside Buffer

Valid

1

1

1

1

0

1

1

0

1

1

0

1

Page table

Physical page

addressValid

TLB

1

1

1

1

0

1

Tag

Virtual page

number

Physical page

or disk address

Physical memory

Disk storage

• Special cache for
recently used
translation

• TLB misses are
typically handled as
exceptions by
operating system

• Simple replacement
strategy since TLB
misses happen
frequently

Valid Tag Data

Page offset

Page offset

Virtual page number

Virtual address

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte
offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB

Physical address

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0

Fully associative TLB

Direct-mapped Cache

Address translation and
block identification

TLB and Cache in MIPSTLB and Cache in MIPS

Yes

Deliver data

to the CPU

Write?

Try to read data

from cache

Write data into cache,

update the tag, and put

the data and the address

into the write buffer
Cache hit?Cache miss stall

TLB hit?

TLB access

Virtual address

TLB miss

exception

No

YesNo

YesNo

Write access

bit on?

YesNo

Write protection

exception

Physical address

A cache hit can only occur after TLB hit

(TLB miss & No Page fault ! load page address to TLB)

W
rite-through cache

TLB and Cache in MIPSTLB and Cache in MIPS

Cache TLB
Page
fault

Possible? If so, under what condition

miss hit hit Possible, although the page table is never really checked if TLB hits

hit miss hit TLB misses, but entry found in page table and data found in cache

miss miss hit TLB misses, but entry found in page table and data misses in cache

miss miss miss TLB misses and followed by page fault. Data must miss in cache

miss hit miss Impossible: cannot have a translation in TLB if page is not in memory

hit hit miss Impossible: cannot have a translation in TLB if page is not in memory

hit miss miss Impossible: data is not allowed in cache if page is not in memory

Possible exceptions:

Cache miss: referenced block not in cache and needs to be fetched from main memory

TLB miss: referenced page of virtual address needs to be checked in the page table

Page fault: referenced page is not in main memory and needs to be copied from disk

Memory Related ExceptionsMemory Related Exceptions

Memory ProtectionMemory Protection

• Want to prevent a process from
corrupting memory space of other
processes
– Privileged and non-privileged execution

• Implementation can map independent
virtual pages to separate physical pages

• Write protection bits in the page table for
authentication

• Sharing pages through mapping virtual
pages of different processes to same
physical pages

Memory ProtectionMemory Protection

• To enable the operating system to
implement protection, the hardware must
provide at least the following capabilities:

– Support at least two mode of operations,
one of them is a user mode

– Provide a portion of CPU state that a user
process can read but not write,

• e.g. page pointer and TLB

– Enable change of operation modes through
special instructions

Handling TLB Misses & PageHandling TLB Misses & Page

FaultsFaults
• TLB Miss: (hardware-based handling)

– Check if the page is in memory (valid bit) # update the TLB

– Generate page fault exception if page is not in memory

• Page Fault: (handled by operating system)
– Transfer control to the operating system

– Save processor status: registers, program counter, page table
pointer, etc.

– Lookup the page table and find the location of the page on disk

– Choose a physical page to host the referenced page, if the candidate
physical page is modified (dirty bit is set) the page needs to be
written back

– Start reading the page from disk to the assigned physical page

• The processor needs to support “restarting” instructions in order
to guarantee correct execution
– The user process causing the page fault will be suspended by the

operating system until the page is readily available in main memory

– Protection violations are handled by the operating system similarly
but without automatic instruction restarting

