CMSC 611: Advanced
Computer Architecture

Cache & Memory

Most slides adapted from David Patterson. Some from Mohomed Younis

Second Level Cache

* The previous techniques reduce the impact of
the miss penalty on the CPU

— L2 cache handles the cache-memory interface
* Measuring cache performance
AMAT = HitTime| 1 + MissRate| 1 x MissPenalty| 4
= HitTime| 1 + MissRate| 1 x (HitTime| o + MissRate| o x MissPenalty| 5)

 Local miss rate

— misses in this cache divided by the total number of
memory accesses to this cache (MissRate,)

» Global miss rate (& biggest penalty!)

— misses in this cache divided by the total number of
memory accesses generated by the CPU
(MissRate , x MissRate,)

Local vs Global Misses

80.0%

70.0% ST 1%

. (4]

60.0% -~
0

50.0% \

Miss — 40.0% \ 38%
rate \
30.0% 28%
20.0% 18% 4

10.0% B% 6%

E:: 4°IA’ 3% 29 1% 1% 1% 1% 1% 1% Single cache miss rate
3%—13%—139%_ 120, it ® & B m Global miss rate

4 8 16 32 64 128 256 512 1024 2048 4096
Cache size (KB)

Local miss rate

(Global miss rate close to single level cache rate provided L2 >> L1)

Relative execution time

L2 Cache Parameters

« 32 bit bus . _
. 519KB cache L1 cache directly affects
the processor design
2.00 1.9 and clock cycle: should

be simple and small

* Bulk of optimization
techniques can go easily
to L2 cache

1.54
L o » Miss-rate reduction
' 128 107 B more practical for L2
| Considering the L2
J I I I cache can improve the
o B B B L1 cache design,
16 32 64 128 256 51

1.75 |

5
Z — e.g. use write-through if
L2 cache applies write-

Block size of second-level cache (byte) back

Reducing Hit Time
Average Access Time x (1 - Miss Rate) + Miss Time x Miss Rate

* Hit rate is typically very high compared to miss rate
— any reduction in hit time is magnified

 Hit time critical: affects processor clock rate

* Three techniques to reduce hit time:
— Simple and small caches
— Avoid address translation during cache indexing
— Pipelining writes for fast write hits

Simple and small caches

« Design simplicity limits control logic complexity and
allows shorter clock cycles

« On-chip integration decreases signal propagation

delay, thus reducing hit time

— Alpha 21164 has 8KB Instruction and 8KB data cache and
96KB second level cache to reduce clock rate

Avoiding Address Translation

 Send virtual address to cache?

— Called Virtually Addressed Cache or just Virtual
Cache vs. Physical Cache

— Every time process is switched logically must flush
the cache; otherwise get false hits

* Cost is time to flush + “compulsory” misses from empty
cache

— Dealing with aliases (sometimes called synonyms)

« Two different virtual addresses map to same physical
address causing unnecessary read misses or even RAW

— |/O must interact with cache, so need virtual
address

Solutions

» Solution to aliases

— HW guarantees that every cache block has
unique physical address (simply check all
cache entries)

— SW guarantee: lower n bits must have same
address so that it overlaps with index; as
long as covers index field & direct mapped,
they must be unique; called page coloring

« Solution to cache flush

— Add process identifier tag that identifies
process as well as address within process:
cannot get a hit if wrong process

Impact of Using Process 1D

* Miss rate vs. virtually

Mluniprocess [llP0s [llPuge addressed cache
size of a program
measured three
ways:

— Without process

switches
(uniprocessor)

— With process
switches using a PID

% M a1 Maswn N a3% Bas% tag (PID)
AL ig;j Ios/ lggé .03 =_8_ - Wlth prOCeSS

0.4%

32K 64K 128K 256K 512K 1024K SWltCheS but WlthOUt
PID (purge)

13.0%

Virtually Addressed Caches

VA: Virtual address

CPU

Conventional
Organization

TB: Translation buffer

CPU

lVA

$

lVA

B

lPA

MEM

VA
Tags

Virtually Addressed Cache
Translate only on miss
Synonym Problem

PA
Tags

PA: Page address

i }
$ B
Le’ $_J

MEM

Overlap $ access
with VA translation:
requires $ index to

remain invariant
across translation

Indexing via Physical
Addresses

If index is physical part of address, can start tag
access in parallel with translation

To get the best of the physical and virtual caches, use
the page offset (not affected by the address
translation) to index the cache

The drawback is that direct-mapped caches cannot be
bigger than the page size (typically 4-KB)
31 12 1 0

Page address Page offset
Address tag Index Block offset

To support bigger caches and use same technique:

— Use higher associativity since the tag size gets smaller

— OS implements page coloring since it will fix a few least
significant bits in the address (move part of the index to the

tag)

Pipelined Cache Writes

* In cache read, tag check and block reading are
performed in parallel while writing requires validating

the tag first
« Tag Check can be performed in parallel with a

previous cache update o
Pipeline Tag Check e ot
and Update Cache @ J'
as separate stages; | Tag | ‘
Current ert e t 3 g Delayed write buffer
check & previous & , }

write cache update

X Data

“Delayed Write Buffer”; must be 1
checked on reads; either complete wite

write or read from buffer
Lower level memory .

miss
penalty

hit

miss rate

Cache Optimization Summary

Technique MR MP HT Complexity

Larger Block Size

Higher Associativity

Victim Caches
Pseudo-Associative Caches

HW Pre-fetching of Instr/Data
Compiler Controlled Pre-fetching
Compiler Reduce Misses

+ + + + + + +

S WMNDNDDN-O

Priority to Read Misses
Sub-block Placement

Early Restart & Critical Word 1st
Non-Blocking Caches

Second Level Caches

+ + + + +

time

Small & Simple Caches — +
Avoiding Address Translation
Pipelining Writes +

+

- N O NOWON - -

Capacity
Access Time

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-40 ns

Main Memory
M Bytes
70ns-1us

Disk
G Bytes
ms

Tape
infinite
sec-min

Memory Hierarchy

Upper Level
Staging
Transfer Unit A faster
Registers
Prog./compiler
I Instr. Operands 1-8 bytes
Cache
cache cntl
I Blocks 8-128 bytes
Main Memory
(0]
Pages 512-4K bytes
Disk
_ user/operator
I Files Mbytes M
Larger
Tape Lower Level

Virtual Memory

Using virtual addressing,
main memory plays the
role of cache for disks

The virtual space is
much larger than the
physical memory space

Physical main memory
contains only the active
portion of the virtual
space

Address space can be
divided into fixed size
(pages) or variable size
(segments) blocks

Virtual addresses

Physical addresses

Address translation

Sl

Cache
Block

Cache miss

Block
addressing

=

N~

Disk addresses

Virtual memory

J

J

Page
page fault

Address
translation

- Advantages

— Allows efficient and safe
data sharing of memory
among multiple programs

— Moves programming
burdens of a small, limited
amount of main memory

— Simplifies program

Virtual Memeory

Virtual addresses Physical addresses
Address translation

Sl

=

N~

Disk addresses

loading and avoid the

need for contiguous Cache Virtual memory
memory block

Block = Page
— allows programs to be
loaded at any physical Cache miss = page fault
memory location Block — Address

addressing translation

Virtual Addressing

« Page faults are costly and take millions of cycles to
process (disks are slow)

« Optimization Strategies:
— Pages should be large enough to amortize the access time
— Fully associative placement of pages reduces page fault rate
— Software-based so can use clever page placement

— Write-through can make writing very time consuming (use
copy back)

Virtual address

3130292827 ...iiiiennn.n 15141312 111098 3210

Virtual page number Page offset

\ 4
(Translation ’

2928 27 R AR 15141312 111098 K P 3210

Physical page number Page offset

Physical address

- Page table:

Resides in main

memory

One entry per virtual

page

No tag is requires since
it covers all virtual

pages
Point directly to
physical page

Table can be very large
Operatlng SyS may present in memory

Page Table Hardware supported

| Page table register

Virtual address

3130 29 28 27 cercccinerinienaes 15 14 13 12 11 10 9 8 «+vc+- 3210

Virtual page number

Page offset

J20

#Valid Physical page number

Page table

v
If 0 then page is not

d 12

maintain One page)) P 0000000000000000¢ veee 1514 1312 11109 8-+ 3210
table per process Ryl g e umEss

A dirty bit is used to Physical address
track modified pages

for copy back

Page offset

Page Faults

A page fault happens when the valid bit of a virtual page is off

A page fault generates an exception to be handled by the
operating system to bring the page to main memory from a disk

The operating system creates space for all pages on disk and
keeps track of the location of pages in main memory and disk

Page location on disk can be stored in page table or in an
auxiliary structure Virtual page

number

LRU page replacement 1 erpecaipageor Physical memory
strategy is the most common valid dikcaddress

Simplest LRU implementation
uses a reference bit per page
and periodically reset
reference bits

Al

Disk storage

y
alol=al=lol=]=lol=a|=-]=-]-=-

Optimizing Page Table Size

With a 32-bit virtual address, 4-KB pages, and 4 bytes per page table entry:
32

Number of page table entries = zﬁ =220
Size of page table = 220 page table entries x 22 bytes =4 MB
page table entry

* Optimization techniques:

— Keep bound registers to limit the size of page table for given
process in order to avoid empty slots

— Store only physical pages and apply hashing function of the
virtual address (inverted page table)

— Use multi-level page table to limit size of the table residing in
main memory

— Allow paging of the page table
— Cache the most used pages = Translation Look-aside Buffer

Multi-Level Page Table

32-bit address:

1K
PTEs

10 10 12
P1 index |P2index |page offest

° 2 GB virtual address space
°4 MB of PTE2

— paged, holes
°4 KB of PTE1

—» 4 bytes <+—

Inverted page table can be the only
practical solution for huge address
space, e.g 64-bit address space

—» 4 bytes <+—

Transliation Look-aside Buffer

Virtual page
number Valid

TLB
Physical page

Tag

v
alol-a)=_al-_]-

Page table
Physical page

Valid or disk address

LN

Physical memory

Disk storage

$
N

]
N

N
\\

\
N\
N

v
N Vol RN N Vo) EE BN Vo)l N RIEN RIS\ REEN

(A
N

Special cache for
recently used
translation

TLB misses are
typically handled as
exceptions by
operating system
Simple replacement
strategy since TLB
misses happen
frequently

TLE and Cache in MIPS

Virtual address

313029 +ccveccccccnn 1514131211 1098 - - - - 3210
FU”y associative TLB | Virtual page number | Page offset |
J 2 2
Valid Dirty Tag Physical page number
TLB™ O
&+
TLB hit+«—fe &) —
&)
O
O
J20
Address translation and
block identification .. A P
> Physical address tag Cache index Byte
_| offset
16 J4 +2
Direct-mapped Cache
AAAAAAA Valid Tag Data
............................ Ny
Cache
132
/'= N
Data

Cache hito—C_r

TLE and Cache in MIPS

Virtual address

l

A cache hit can only occur after TLB hit
(TLB miss & No Page fault = load page address to TLB)

TLB access

TLB miss 4,
exception Physical address 7
v
.| Try to read data
from cache Write access
bit on?
l ‘,
Write protection . .
exception Write data into cache,
No Yes update the tag, and put
Cache miss stall the data and the address
into the write buffer

Deliver data
to the CPU

Memory Related Exceptions

Possible exceptions:

Cache miss: referenced block not in cache and needs to be fetched from main memory
TLB miss: referenced page of virtual address needs to be checked in the page table

Page fault: referenced page is not in main memory and needs to be copied from disk

Page

Cache | TLB fault Possible? If so, under what condition

miss hit hit Possible, although the page table is never really checked if TLB hits

hit miss hit TLB misses, but entry found in page table and data found in cache

miss | miss hit TLB misses, but entry found in page table and data misses in cache

miss | miss | miss | TLB misses and followed by page fault. Data must miss in cache

miss hit miss | Impossible: cannot have a translation in TLB if page is not in memory

hit hit miss | Impossible: cannot have a translation in TLB if page is not in memory

hit miss | miss | Impossible: data is not allowed in cache if page is not in memory

Memory Protection

Want to prevent a process from

corrupting memory space of other
processes

— Privileged and non-privileged execution

Implementation can map independent
virtual pages to separate physical pages
Write protection bits in the page table for
authentication

Sharing pages through mapping virtual
pages of different processes to same
physical pages

Memory Protection

* To enable the operating system to
Implement protection, the hardware must
provide at least the following capabilities:

— Support at least two mode of operations,
one of them is a user mode

— Provide a portion of CPU state that a user
process can read but not write,
* e.g. page pointer and TLB

— Enable change of operation modes through
special instructions

Handling TLE Misses & Page

Faults

TLB Miss: (hardware-based handling)
— Check if the page is in memory (valid bit) — update the TLB
— Generate page fault exception if page is not in memory
Page Fault: (handled by operating system)
— Transfer control to the operating system

— Save processor status: registers, program counter, page table
pointer, etc.

— Lookup the page table and find the location of the page on disk

— Choose a physical page to host the referenced page, if the candidate
physical page is modified (dirty bit is set) the page needs to be
written back

— Start reading the page from disk to the assigned physical page
The processor needs to support “restarting” instructions in order
to guarantee correct execution

— The user process causing the page fault will be suspended by the
operating system until the page is readily available in main memory

— Protection violations are handled by the operating system similarly
but without automatic instruction restarting

