CMSC 611: Advanced
Computer Architecture

Branch Prediction

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides
Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

Branching Dilema

With the increased pipeline throughput, control
dependence rapidly becomes the limiting factor to the
amount of ILP

For pipelines that issue n-instructions per clock cycle,
the negative impact of stalls caused by control
hazards magnifies

Compiler-based techniques rely on static program
properties to handle control hazards

Hardware-based techniques refer to the dynamic
behavior of the program to predict the outcome of a
branch

Branch Target Cache

Predict not-taken: still stalls to wait for
branch target computation

If address could be guessed, the branch
penalty becomes zero

Cache predicted address based on
branch address

Complications for complex predictors: do
we know in time?

Branch Target Cache

Look up Predicted PC

Number of
entries

in branch-
target
buffer

No: instruction is
not predicted to be Branch

branch. Proceed normally predicted
taken or

Yes: then instruction is branch and predicted untaken

PC should be used as the next PC

Handling Branch Target Cache

* No branch delay if the a
branch prediction entry
Is found and is correct

* A penalty of two cycle is
iImposed for a wrong
prediction or a cache
miss

» Cache update on
misprediction and
misses can extend the
time penalty

* Dealing with misses or
misprediction is
expensive and should
be optimized

Send PO to
memory and
branch-target
buffer

IF
Entry found in
branch-target
buffer?
Send out
s predicted
instruction
a taken
branch?
D
No
Normal
instruction
axecuton
Mispredicted Branch
branch, kill fetched correctly
instruction; restan predicted
EX fetch at other continue
(|

target; delete
entry from
target buffer

Return Address Cache

» Branch target caching can be applied to expedite
unconditional jumps (branch folding) and returns for
procedure calls

« For calls from multiple sites, not clustered in time, a stack
implementation of the branch target cache can be useful

BOYp - oo e
R m gccC O espresso ® |i
40 S o foppp 4 doduc A tomcatv

Misprediction rate

Number of entries in the return stack

Basic Branch Prediction

» Simplest dynamic branch-prediction scheme

— use a branch history table to track when the branch was taken
and not taken

— Branch history table is a small 1-bit buffer indexed by lower
bits of PC address with the bit is set to reflect the whether or
not branch taken last time

« Performance = f(accuracy, cost of misprediction)
* Problem: in a nested loop, 1-bit branch history table
will cause two mispredictions:

— End of loop case, when it exits instead of looping

— First time through loop on next time through code, when it
predicts exit instead of looping

2-bit Branch History Table

A two-bit buffer better captures the history of
the branch instruction

A prediction must miss twice to change

Taken
Not taken
Predict taken Predict taken
.......... Taken
Taken : Not taken
Not taken

Predict not taken

Predict not taken

N=bit Predictors

 2-bit is a special case of n-bit counter
— For every entry in the prediction buffer
— Increment/decrement if branch taken/not

— If the counter value is one half of the
maximum value (2n-1), predict taken

» Slow to change prediction, but can

change

SPEC89 benchmarks

Performance of 2-bit Branch

nasa’7

matrix300
tomcatv
doduc
spice
fpppp
gcc

espresso
eqgntott

1%

0%
1%

Buffer

 Prediction accuracy of a 4096-entry
prediction buffer ranges from 82% to
99% for the SPEC89 benchmarks

* The performance impact depends on
5o, frequency of branching instructions

and the penalty of misprediction
9%

9%
12%
5%
18%

10%

0% 2%

4%

6% 8% 10% 12% 14% 16% 18%
Frequency of mispredictions

SPEC89 benchmarks

Optimal Size for 2-bit Branch

nasa7y

matrix300

tomcatv

doduc

spice

foppp

gcc

espresso

eqntott

H 4096 entries (2 bits/entry)

h 1%

0%

0%
0%

1%
0%

» Buffer size has little impact
beyond a certain size

» Misprediction is because either:
o —Wrong guess for that branch

o —Got branch history of wrong
2% branch (different branches
with same low-bits of PC)

9%
9%

12%
119%

5%
5%

189%
189%

109
109%

0%

2%

4%

8% 8% 10% 129% 1495% 169% 18%
Fregquency of mispredictions

B Unlimited entries (2 bits/entry)

