
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

Branch PredictionBranch Prediction

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science



Branching Branching DilemaDilema

• With the increased pipeline throughput, control

dependence rapidly becomes the limiting factor to the

amount of ILP

• For pipelines that issue n-instructions per clock cycle,

the negative impact of stalls caused by control

hazards magnifies

• Compiler-based techniques rely on static program

properties to handle control hazards

• Hardware-based techniques refer to the dynamic

behavior of the program to predict the outcome of a

branch



Branch Target CacheBranch Target Cache

• Predict not-taken: still stalls to wait for

branch target computation

• If address could be guessed, the branch

penalty becomes zero

• Cache predicted address based on

branch address

• Complications for complex predictors: do

we know in time?



Branch Target CacheBranch Target Cache



Handling Branch Target CacheHandling Branch Target Cache

• No branch delay if the a
branch prediction entry
is found and is correct

• A penalty of two cycle is
imposed for a wrong
prediction or a cache
miss

• Cache update on
misprediction and
misses can extend the
time penalty

• Dealing with misses or
misprediction is
expensive and should
be optimized



M
is

p
re

d
ic

ti
o

n
 r

a
te

Return Address CacheReturn Address Cache

• Branch target caching can be applied to expedite

unconditional  jumps (branch folding) and returns for

procedure calls

• For calls from multiple sites, not clustered in time, a stack

implementation of the branch target cache can be useful



Basic Branch PredictionBasic Branch Prediction

• Simplest dynamic branch-prediction scheme

– use a branch history table to track when the branch was taken

and not taken

– Branch history table is a small 1-bit buffer indexed by lower

bits of PC address with the bit is set to reflect the whether or

not branch taken last time

• Performance = ƒ(accuracy, cost of misprediction)

• Problem: in a nested loop, 1-bit branch history table

will cause two mispredictions:

– End of loop case, when it exits instead of looping

– First time through loop on next time through code, when it

predicts exit instead of looping



2-bit Branch History Table2-bit Branch History Table

• A two-bit buffer better captures the history of

the branch instruction

• A prediction must miss twice to change



N-bit PredictorsN-bit Predictors

• 2-bit is a special case of n-bit counter

– For every entry in the prediction buffer

– Increment/decrement if branch taken/not

– If the counter value is one half of the

maximum value (2n-1), predict taken

• Slow to change prediction, but can

change



S
P

E
C

8
9

 b
e

n
c

h
m

a
rk

s

• Prediction accuracy of a 4096-entry

prediction buffer ranges from 82% to

99% for the SPEC89 benchmarks

• The performance impact depends on

frequency of branching instructions

and the penalty of misprediction

Performance of 2-bit BranchPerformance of 2-bit Branch
BufferBuffer



S
P

E
C

8
9

 b
e

n
c

h
m

a
rk

s

! 4096 entries (2 bits/entry) ! Unlimited entries (2 bits/entry)

• Buffer size has little impact

beyond a certain size

• Misprediction is because either:

–Wrong guess for that branch

–Got branch history of wrong

branch (different branches

with same low-bits of PC)

Optimal Size for 2-bit BranchOptimal Size for 2-bit Branch

BuffersBuffers


