
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

Benchmarks & Instruction SetBenchmarks & Instruction Set

ArchitectureArchitecture

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides

Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science



610  time Execution

count nInstructio
  MIPS) (native MIPS

!
=

The use of MIPS is simple and intuitive, faster machines have bigger MIPS

Using MIPSUsing MIPS

• MIPS = Million of Instructions Per Second
– one of the simplest metrics

– valid only in a limited context

• There are three problems with MIPS:
– MIPS specifies the instruction execution rate but

not the capabilities of the instructions

– MIPS varies between programs on the same
computer

– MIPS can vary inversely with performance (see
next example)



Consider the machine with the following three instruction classes and CPI:

Now suppose we measure the code for the same program from two different

compilers and obtain the following data:

Assume that the machine’s clock rate is 500 MHz. Which code sequence

will execute faster according to MIPS?  According to execution time?

Answer:

Instruction class CPI for this instruction class

A 1

B 2

C 3

Instruction count in (billions) for each

instruction classCode from

A B C

Compiler 1 5 1 1

Compiler 2 10 1 1

i

n

i

i CCPI != "
=1

cycles clock CPUUsing the formula:

Sequence 1: CPU clock cycles = (5 !1 + 1 !2 + 1 !3) ! 109 = 10!109 cycles

Sequence 2: CPU clock cycles = (10 !1 + 1 !2 + 1 !3) ! 109 = 15!109 cycles

ExampleExample



Sequence 1: Execution time = (10!109)/(500!106) = 20 seconds

Sequence 2: Execution time = (15!109)/(500!106) = 30 seconds

Therefore compiler 1 generates a faster program

rate Clock

cycles clock CPU
time Exection =Using the formula:

6
10  time Execution

count nInstructio
   MIPS

!
=Using the formula:

6

9

10  20

10  1)  1  (5
   MIPS

!

!++
=Sequence 1: = 350

6

9

10  30

10  1)  1  (10
   MIPS

!

!++
=Sequence 2: = 400

Although compiler 2 has a higher MIPS rating, the code from generated by

compiler 1 runs faster

Example (Cont.)Example (Cont.)



reference

unrated

reference
MIPS 

 time Execution

time Execution
   MIPS Relative !=

Native, Peak and RelativeNative, Peak and Relative

MIPS, & FLOPSMIPS, & FLOPS
• Peak MIPS is obtained by choosing an

instruction mix that maximizes the CPI,

even if the mix is impractical

• To make MIPS more practical among

different instruction sets, a relative MIPS

is introduced to compare machines to

an agreed-upon reference machine (e.g.

Vax 11/780)



Native, Peak and RelativeNative, Peak and Relative

MIPS, & FLOPSMIPS, & FLOPS
• With the fast development in the computer

technology, reference machine cannot be
guaranteed to exist

• Relative MIPS is practical for evolving design
of the same computer

• With the introduction of supercomputers
around speeding up floating point
computation, the term MFLOP is introduced
analogous to MIPS



Synthetic BenchmarksSynthetic Benchmarks

• Synthetic benchmarks are artificial programs

that are constructed to match the

characteristics of large set of programs

• Whetstone (scientific programs in Algol !

Fortran) and Dhrystone (systems programs in

Ada ! C) are the most popular synthetic

benchmarks

•  Whetstone performance is measured in

“Whetstone per second” – the number of

executions of one iteration of the whetstone

benchmark



Synthetic BenchmarkSynthetic Benchmark

DrawbacksDrawbacks
1. They do not reflect the user interest

since they are not real applications

2. They do not reflect real program

behavior (e.g. memory access pattern)

3. Compiler and hardware can inflate the

performance of these programs far

beyond what the same optimization

can achieve for real-programs



Dhrystone ExamplesDhrystone Examples

• By assuming word alignment in string
copy a 20-30% performance
improvement could be achieved

– Although 99.70-99.98% of typical string
copies could NOT use such optimization

• Compiler optimization could easily
discard 25% of the Dhrystone code for
single iteration loops and inline
procedure expansion



Final Performance RemarksFinal Performance Remarks

• Designing for performance only without considering
cost is unrealistic
– In the supercomputing industry performance is the primary

and dominant goal

– Low-end personal and embedded computers are extremely
cost driven

• Performance depends on three major factors
– number of instructions,

– cycles consumed by instruction execution

– clock cycle

• The art of computer design lies not in plugging
numbers in a performance equation, but in accurately
determining how design alternatives will affect
performance and cost



IntroductionIntroduction

• To command a computer's hardware, you must speak its

language

• Instructions: the “words” of a machine's language

• Instruction set: its “vocabulary

• The MIPS instruction set is used as a case study

instruction set

software

hardware

Figure:  Dave Patterson



Instruction Set ArchitectureInstruction Set Architecture

• Once you learn one machine language, it is easy to
pick up others:
– Common fundamental operations

– All designer have the same goals: simplify building hardware,
maximize performance, minimize cost

• Goals:
– Introduce design alternatives

– Present a taxonomy of ISA alternatives

• + some qualitative assessment of pros and cons

– Present and analyze some instruction set measurements

– Address the issue of languages and compilers and their
bearing on instruction set architecture

– Show some example ISA’s



• A good interface:
– Lasts through many implementations (portability,

compatibility)

– Is used in many different ways (generality)

– Provides convenient  functionality to higher levels

– Permits an efficient implementation at lower levels

• Design decisions must take into account:
– Technology

– Machine organization

– Programming languages

– Compiler technology

– Operating systems

Interface

imp 1

imp 2

imp 3

use

use

use

T
im

e

Slide: Dave Patterson

Interface DesignInterface Design



Memory Memory ISAsISAs

• Terms

– Result = Operand <operation> Operand

• Stack

– Operate on top stack elements, push result

back on stack

• Memory-Memory

– Operands (and possibly also result) in

memory



RegisterRegister ISAs ISAs

• Accumulator Architecture
– Common in early stored-program computers when hardware

was expensive

– Machine has only one register (accumulator) involved in all
math & logic operations

– Accumulator = Accumulator op Memory

• Extended Accumulator Architecture (8086)
– Dedicated registers for specific operations, e.g stack and

array index registers, added

• General-Purpose Register Architecture (MIPS)
– Register flexibility

– Can further divide these into:

• Register-memory: allows for one operand to be in memory

• Register-register (load-store): all operands in registers



ISA OperationsISA Operations



Famous ISAFamous ISA

• Stack

• Memory-Memory

• Accumulator Architecture

• Extended Accumulator Architecture

• General-Purpose Register Architecture

Machine # general-purpose
registers

Architecture style Year

Motorola 6800 2 Accumulator 1974

DEC VAX 16 Register-memory, memory-memory 1977

Intel 8086 1 Extended accumulator 1978

Motorola 68000 16 Register-memory 1980

Intel 80386 32 Register-memory 1985

PowerPC 32 Load-store 1992

DEC Alpha 32 Load-store 1992



Other types of ArchitectureOther types of Architecture

• High-Level-Language Architecture

– In the 1960s, systems software was rarely written in high-

level languages

• virtually every commercial operating system before Unix was

written in assembly

– Some people blamed the code density on the instruction set

rather than the programming language

– A machine design philosophy advocated making the

hardware more like high-level languages

– The effectiveness of high-level languages, memory size

limitation and lack of efficient compilers doomed this

philosophy to a historical footnote



Other types of ArchitectureOther types of Architecture

• Reduced Instruction Set Architecture
– With the recent development in compiler technology and

expanded memory sizes less programmers are using
assembly level coding

– Drives ISA to favor benefit for compilers over ease of manual
programming

• RISC architecture favors simplified hardware design
over rich instruction set
– Rely on compilers to perform complex operations

• Virtually all new architecture since 1982 follows the
RISC philosophy:
– fixed instruction lengths, load-store operations, and limited

addressing mode



Compact CodeCompact Code

• Scarce memory or limited transmit time (JVM)

• Variable-length instructions (Intel 80x86)

– Match instruction length ot operand specification

– Minimize code size

• Stack machines abandon registers altogether

– Stack machines simplify compilers

– Lend themselves to a compact instruction encoding

– BUT limit compiler optimization



Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
          from Implementation

High-level Language Based Concept of a Family

(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(MIPS,SPARC,IBM RS6000, . . .1987)
Slide: Dave Patterson

Evolution of Instruction SetsEvolution of Instruction Sets


