
CMSC 611: Advanced
Computer Architecture

Distributed & Shared Memory

Centralized Shared Memory
MIMD

Processors share a single centralized memory through a
bus interconnect
• Feasible for small processor count to limit memory contention
• Caches serve to:

– Increase bandwidth versus bus/memory
– Reduce latency of access
– Valuable for both private data and shared data•

– Access to shared data is
optimized by replication

• Decreases latency

• Increases memory bandwidth

• Reduces contention

• Replication introduces the
problem of cache coherence

Cache Coherency

A memory system is coherent if:
• P reads X, P writes X, no other processor writes X, P reads X

– Always returns value written by P
• P reads X, Q writes X, P reads X

– Returns value written by Q (provided sufficient W/R separation)
• P writes X, Q writes X

– Seen in the same order by all processors

A cache coherence problem arises when the cache
reflects a view of memory which is different from reality

Potential HW Coherency
Solutions

Snooping Solution (Snoopy Bus)
• Send all requests for data to all processors
• Processors snoop to see if they have a copy and respond

accordingly
• Requires broadcast, since caching information is at processors
• Works well with bus (natural broadcast medium)
• Dominates for small scale machines (most of the market)

Directory-Based Schemes
• Keep track of what is being shared in one centralized place
• Distributed memory ⇒ distributed directory for scalability

(avoids bottlenecks)
• Send point-to-point requests to processors via network
• Scales better than Snooping
• Actually existed before Snooping-based schemes

* Slide is partially a courtesy of Dave Patterson

Basic Snooping Protocols

Write Invalidate Protocol:
• Write to shared data: an invalidate is sent to all caches which

snoop and invalidate any copies
• Cache invalidation will force a cache miss when accessing the

modified shared item
• For multiple writers only one will win the race ensuring serialization

of the write operations
• Read Miss:

– Write-through: memory is always up-to-date
– Write-back: snoop in caches to find most recent copy

* Slide is partially a courtesy of Dave Patterson

Basic Snooping Protocols

Write Broadcast (Update) Protocol (typically write
through):
• Write to shared data: broadcast on bus, processors snoop, and

update any copies
• To limit impact on bandwidth, track data sharing to avoid

unnecessary broadcast of written data that is not shared
• Read miss: memory is always up-to-date
• Write serialization: bus serializes requests!

* Slide is partially a courtesy of Dave Patterson

Invalidate vs. Update

Write-invalidate has emerged as the
winner for the vast majority of designs

Qualitative Performance Differences :
• Spatial locality

– WI: 1 transaction/cache block;

– WU: 1 broadcast/word

• Latency
– WU: lower write–read latency

– WI: must reload new value to cache

Invalidate vs. Update

Because the bus and memory bandwidth
is usually in demand, write-invalidate
protocols are very popular

Write-update can causes problems for
some memory consistency models,
reducing the potential performance gain it
could bring

The high demand for bandwidth in write-
update limits its scalability for large
number of processors

An Example Snoopy Protocol

Invalidation protocol, write-back cache

Each block of memory is in one state:
• Clean in all caches and up-to-date in memory (Shared)
• OR Dirty in exactly one cache (Exclusive)
• OR Not in any caches

Each cache block is in one state (track these):
• Shared : block can be read
• OR Exclusive : cache has only copy, it is write-able, and dirty
• OR Invalid : block contains no data

Read misses: cause all caches to snoop bus

Writes to clean line are treated as misses

* Slide is partially a courtesy of Dave Patterson

Snoopy-Cache Controller

* Slide is a courtesy of Dave Patterson

Complications
• Cannot update cache until

bus is obtained
• Two step process:

– Arbitrate for bus
– Place miss on bus and

complete operation
• Split transaction bus:

– Bus transaction is not
atomic

– Multiple misses can
interleave, allowing two
caches to grab block in
the Exclusive state

– Must track and prevent
multiple misses for one
block

Example

Assumes memory
blocks A1 and A2 map
to same cache block,
initial cache state is
invalid

* Slide is a courtesy of Dave Patterson

Example

Assumes memory
blocks A1 and A2
map to same cache
block

* Slide is a courtesy of Dave Patterson

Example

* Slide is a courtesy of Dave Patterson

Assumes memory
blocks A1 and A2
map to same cache
block

Example

* Slide is a courtesy of Dave Patterson

Assumes memory
blocks A1 and A2
map to same cache
block

Example

* Slide is a courtesy of Dave Patterson

Assumes memory
blocks A1 and A2
map to same cache
block

Example

A1

A1

* Slide is a courtesy of Dave Patterson

Assumes memory
blocks A1 and A2
map to same cache
block

Distributed Directory
Multiprocessors

* Slide is partially a courtesy of Dave Patterson

Directory per cache that tracks state of every block in every cache

• Which caches have a copy of block, dirty vs. clean, ...
• Info per memory block vs. per cache block?

– PLUS: In memory => simpler protocol (centralized/one location)
– MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache size)

To prevent directory from being a bottleneck, distribute
directory entries with memory, each keeping track of which
processor have copies of their blocks

Directory Protocol

Similar to Snoopy Protocol: Three states
• Shared: Multiple processors have the block cached and the

contents of the block in memory (as well as all caches) is up-to-
date

• Uncached No processor has a copy of the block (not valid in any
cache)

• Exclusive: Only one processor (owner) has the block cached and
the contents of the block in memory is out-to-date (the block is
dirty)

In addition to cache state, must track which processors
have data when in the shared state
• usually bit vector, 1 if processor has copy

* Slide is a courtesy of Dave Patterson

Directory Protocol

Keep it simple(r):
• Writes to non-exclusive data => write miss
• Processor blocks until access completes
• Assume messages received and acted upon in order sent

Terms: typically 3 processors involved
• Local node where a request originates
• Home node where the memory location of an address resides
• Remote node has a copy of a cache block, whether exclusive or

shared

No bus and do not want to broadcast:
• interconnect no longer single arbitration point
• all messages have explicit responses

Example Directory Protocol

Message sent to directory causes two
actions:
• Update the directory

• More messages to satisfy request

We assume operations atomic, but they
are not; reality is much harder; must avoid
deadlock when run out of buffers in
network

* Slide is a courtesy of Dave Patterson

Directory Protocol Messages
Type SRC DEST MSG
Read miss local cache home directory P,A

P has read miss at A; request data and make P a read sharer
Write miss local cache home directory P,A

P has write miss at A; request data and make P exclusive owner
Invalidate home directory remote cache A

Invalidate shared data at A
Fetch home directory remote cache A

Fetch block A home; change A remote state to shared
Fetch/invalidate home directory remote cache A

Fetch block A home; invalidate remote copy
Data value reply home directory local cache D

Return data value from home memory

Data write back remote cache home directory A,D
Write back data value for A

* Slide is partially a courtesy of Dave Patterson

State machine for
CPU requests for
each memory block

Cache Controller State
Machine

States identical to
snoopy case
• Transactions very similar.

– Miss messages to home
directory

– Explicit invalidate & data
fetch requests

State machine
for Directory
requests for each
memory block

* Slide is partially a courtesy of Dave Patterson

Directory Controller State
Machine

Same states and
structure as the
transition diagram for an
individual cache
• Actions:

– update of directory state
– send messages to

satisfy requests
• Tracks all copies of each

memory block
– Sharers set

implementation can use
a bit vector of a size of
processors for each
block

Example

P2: Write 20 to A1

Processor 1 Processor 2 Interconnect MemoryDirectory

Assumes memory
blocks A1 and A2
map to same cache
block

* Slide is a courtesy of Dave Patterson

Example

P2: Write 20 to A1

Processor 1 Processor 2 Interconnect MemoryDirectory

WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

Assumes memory
blocks A1 and A2
map to same cache
block

* Slide is a courtesy of Dave Patterson

Example

P2: Write 20 to A1

Processor 1 Processor 2 Interconnect MemoryDirectory

WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0
Excl. A1 10

Assumes memory
blocks A1 and A2
map to same cache
block

* Slide is a courtesy of Dave Patterson

Example

P2: Write 20 to A1

Processor 1 Processor 2 Interconnect MemoryDirectory

WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0
Excl. A1 10

Shar. A1 RdMs P2 A1
Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1

Write Back

Assumes memory
blocks A1 and A2
map to same cache
block

* Slide is a courtesy of Dave Patterson

Example

P2: Write 20 to A1

Processor 1 Processor 2 Interconnect MemoryDirectory

WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0
Excl. A1 10

Shar. A1 RdMs P2 A1
Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1

Excl. A1 20 WrMs P2 A1 10
Inv. Inval. P1 A1 A1 Excl. {P2} 10

Assumes memory
blocks A1 and A2
map to same cache
block

* Slide is a courtesy of Dave Patterson

Example

P2: Write 20 to A1

Processor 1 Processor 2 Interconnect MemoryDirectory

WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0
Excl. A1 10

Shar. A1 RdMs P2 A1
Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1

Excl. A1 20 WrMs P2 A1 10
Inv. Inval. P1 A1 A1 Excl. {P2} 10

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

WrMs P2 A2 A2 Excl. {P2} 0

Assumes memory
blocks A1 and A2
map to same cache
block

* Slide is a courtesy of Dave Patterson

