CMSC 611: Advanced
Computer Architecture

Distributed & Shared Memory

Centralized Shared Memory
MIMD

Processors share a single centralized memory through a
bus interconnect

 Feasible for small processor count to limit memory contention
« Caches serve to:

— Increase bandwidth versus bus/memory

— Reduce latency of access

— Valuable for both private data and shared data
— Access to shared data is

optimized by replication

» Decreases latency

* Increases memory bandwidth

* Reduces contention

» Replication introduces the
problem of cache coherence

Cache Coherency

A cache coherence problem arises when the cache
reflects a view of memory which is different from reality

Cache Cache Memory
Time Event Contents for | Contents for | Contents for
CPUA CPUB location X

CPU A reads X 1
CPU B reads X 1
CPU A stores 0 into X 0

A memory system is coherent if:

* P reads X, P writes X, no other processor writes X, P reads X
— Always returns value written by P
* Preads X, Q writes X, P reads X

— Returns value written by Q (provided sufficient W/R separation)
* P writes X, Q writes X

— Seen in the same order by all processors

Potential HW Coherency
Solutions

Snooping Solution (Snoopy Bus)

« Send all requests for data to all processors

* Processors snoop to see if they have a copy and respond
accordingly

* Requires broadcast, since caching information is at processors

« Works well with bus (natural broadcast medium)

« Dominates for small scale machines (most of the market)
Directory-Based Schemes

« Keep track of what is being shared in one centralized place

« Distributed memory = distributed directory for scalability
(avoids bottlenecks)

« Send point-to-point requests to processors via network

« Scales better than Snooping

 Actually existed before Snooping-based schemes

* Slide is partially a courtesy of Dave Patterson

Basic Snooping Protocols

Write Invalidate Protocol:

* Write to shared data: an invalidate is sent to all caches which
snoop and invalidate any copies

Cache invalidation will force a cache miss when accessing the
modified shared item

For multiple writers only one will win the race ensuring serialization
of the write operations

Read Miss:

— Write-through: memory is always up-to-date

— Write-back: snoop in caches to find most recent copy

Contents Contents | Contents of
Processor activity Bus activity of CPU A’s | of CPU B’s memory

cache cache location X

CPU A reads X Cache miss for X
CPU B reads X Cache miss for X
CPU A writesa 1 to X Invalidation for X
CPU B reads X Cache miss for X 1

* Slide is partially a courtesy of Dave Patterson

Basic Snooping Protocols

Write Broadcast (Update) Protocol (typically write

through):

* Write to shared data: broadcast on bus, processors snoop, and
update any copies

 To limit impact on bandwidth, track data sharing to avoid
unnecessary broadcast of written data that is not shared

* Read miss: memory is always up-to-date

* Write serialization: bus serializes requests!

Contents | Contents Contents
Processor activity Bus activity of CPU of CPU of memory

A’s cache | B’s cache | location X

CPU A reads X Cache miss for X
CPU B reads X Cache miss for X
CPU A writes a 1 to X | Write broadcast of X
CPU B reads X 1

* Slide is partially a courtesy of Dave Patterson

Invalidate vs. Update

Write-invalidate has emerged as the
winner for the vast majority of designs

Qualitative Performance Differences :

« Spatial locality

— WI: 1 transaction/cache block;
— WU: 1 broadcast/word

- Latency

— WU: lower write—read latency
— WI: must reload new value to cache

Invalidate vs. Update

Because the bus and memory bandwidth
Is usually in demand, write-invalidate
protocols are very popular

Write-update can causes problems for
some memory consistency models,
reducing the potential performance gain it
could bring

The high demand for bandwidth in write-
update limits its scalability for large
number of processors

An Example Snoopy Protocol

Invalidation protocol, write-back cache

Each block of memory is in one state:

* Clean in all caches and up-to-date in memory (Shared)
« OR Dirty in exactly one cache (Exclusive)
* OR Not in any caches

Each cache block is in one state (track these):

« Shared : block can be read
« OR Exclusive : cache has only copy, it is write-able, and dirty
* OR Invalid : block contains no data

Read misses: cause all caches to snoop bus
Writes to clean line are treated as misses

* Slide is partially a courtesy of Dave Patterson

Snoopy-Cache Controller

CPU read hit

Complications

~ Write miss for this block ° Cannot update CaChe unt”
_— et bus is obtained
Place read miss on bus Y ¢ TWO Step process:
— Arbitrate for bus
Uit ~ | — Place miss on bus and
' complete operation
Place read « Split transaction bus:
miss on bus . .
— Bus transaction is not
atomic
— Multiple misses can
e miss interleave, allowing two
Exclusive caches to grab block in
d/writ .
— readiurte) CPU write miss the Exclusive state
write hit
CPU read hit — Must track and prevent

Write-back data

Place write miss on bus mU|t|p|e mISSGS for one
block

x
3]
o
o)
X
3
©
2
d
L
E

Place write miss on bus

* Slide is a courtesy of Dave Patterson

Example

P2

Bus

step

Value |State |Addr |Value

Action

P1: Write 10 to A1

P1: Read AT

P2: Read A1

P2: Write 20 to A1

P2: Write 40 to A2

Assumes memory
blocks A1 and A2 map
to same cache block,
initial cache state is
invalid

CPU read hit

CPU read Shared
(read only)

Place read miss on bus

CPU write

Place read
miss on bus

Place write
miss on bus

Cache state transitions
Exclusive based on requests from CPU
(read/write)

CPU write miss
Write-back cache block
Place write miss on bus

CPU write hit
CPU read hit

Write miss
for this block

abort memory
access

Write-back block;

Exclusive
(read/write)

Write miss for
this block Shared
(read only)

Read miss
for this block

Cache state transitions based
on requests from the bus

* Slide is a courtesy of Dave Patterson

Example

P2 Bus
step Value |State |Addr |Value |Action
P1: Write 10 to A1 10 WrMs
P1: Read A1
P2: Read A1

P2: Write 20 to A1

P2: Write 40 to A2

CPU read hit

Write miss for
Shared this block Shared
(read only)

CPU read
Assumes memory Place read miss on bus (read only)

blocks A1 and A2
map to same cache
block

CPU write

Place read
miss on bus

Place write

miss on bus

abort memory
access

Write miss
for this block

Write-back block;

Read miss

Cache state transitions for this block | 54 che state transitions based
Exclusive based on requests from CPU Exclusive on requests from the bus

(read/write) (read/write)

CPU write miss

Write-back cache block

* Slide is a courtesy of Dave Patterson
Place write miss on bus

CPU write hit
CPU read hit

Example

P2 Bus
step Value |State |Addr |Value |Action
P1: Write 10 to A1 10 WrMs
P1: Read A1 10
P2: Read A1

P2: Write 20 to A1

P2: Write 40 to A2

CPU read hit

Write miss for
Shared this block Shared
(read only)

CPU read
Assumes memory Place read miss on bus (read only)

blocks A1 and A2
map to same cache
block

CPU write

Place read
miss on bus

Place write

miss on bus

abort memory
access

Write miss
for this block

Write-back block;

Read miss

Cache state transitions for this block | 54 che state transitions based
Exclusive based on requests from CPU Exclusive on requests from the bus

(read/write) (read/write)

CPU write miss

Write-back cache block

* Slide is a courtesy of Dave Patterson
Place write miss on bus

CPU write hit
CPU read hit

Example

P2

Bus

step

Value

State

Addr

Value

Action

P1: Write 10 to AT

10

WrMs

P1: Read A1

10

P2: Read A1

Shar.

RdMs

10

WrBk

Shar.

RdDa

P2: Write 20 to A1
P2: Write 40 to A2

CPU read hit

Write miss for

Shared this block

(read only)

CPU read
Place read miss on bus

Shared
(read only)

Assumes memory
blocks A1 and A2

map to same cache
block

CPU write

Place read
miss on bus

Place write
miss on bu
abort memory
access

Write-back block;

Write miss

for this block .
Read miss

for this block

Cache state transitions based
on requests from the bus

Cache state transitions
based on requests from CPU

Exclusive
(read/write)

Exclusive
(read/write)

CPU write miss

Write-back cache block

* Slide is a courtesy of Dave Patterson
Place write miss on bus

CPU write hit
CPU read hit

Example

P2

Bus

step

Value [State |Addr [Value

Action

P1: Write 10 to AT

10

WrMs

P1: Read A1

10

P2: Read A1

Shar.

RdMs

10

WrBk

Shar.

RdDa

P2: Write 20 to A1

Excl.

WrMs

P2: Write 40 to A2

Assumes memory
blocks A1 and A2

map to same cache
block

Place write
miss on bu

Exclusive
(read/write)

CPU write hit
CPU read hit

CPU read hit

CPU read Shared
(read only)

Place read miss on bus

CPU write

Place read
miss on bus

Cache state transitions
based on requests from CPU

CPU write miss

Write-back cache block
Place write miss on bus

Write miss for
this block Shared
(read only)

Write-back block;
abort memory
access

Write miss
for this block .
Read miss
AT el Cache state transitions based

Exclusive on requests from the bus
(read/write)

* Slide is a courtesy of Dave Patterson

Example

P2 Bus
step Value |State |Addr |Value |Action
P1: Write 10 to A1 10 WrMs A
P1: Read A1 10
P2: Read A1 Shar. | AT RdMs Al
10 WrBk A1 | 10

Shar. | Al RdDa Al 10
P2: Write 20 to A1 . Excl. | AT WrMs AT
P2: Write 40 to A2 WrMs A2

Excl. | A2 WrBk Al 20

CPU read Shared Write miss for

Assumes memory Place read s o192 o1t S NN
blocks Al and A2

map to same cache
block

CPU write

Place read
miss on bus

Place write
miss on bu

Write-back block;
abort memory
access

Write miss
for this block

Read miss

Cache state transitions based
Exclusive on requests from the bus

Cache state transitions for this block
Exclusive based on requests from CPU

(read/write) (read/write)

CPU write miss

Write-back cache block

* Slide is a courtesy of Dave Patterson
Place write miss on bus

CPU write hit
CPU read hit

Distributed Directory
Multiprocessors

Directory per cache that tracks state of every block in every cache
* Which caches have a copy of block, dirty vs. clean, ...
* Info per memory block vs. per cache block?

— PLUS: In memory => simpler protocol (centralized/one location)

— MINUS: In memory => directory is f(memory size) vs. f(cache size)
To prevent directory from being a bottleneck, distribute
directory entries with memory, each keeping track of which
processor have copies of their blocks

Processor Processor Processor Processor
+ cache + cache + cache + cache
= [Brecton -

i

Processor Processor Processor Pracessor
+ cache + cache + cache + cache

* Slide is partially a courtesy of Dave Patterson

Interconnection network]

Directory Protocol

Similar to Snoopy Protocol: Three states

» Shared: Multiple processors have the block cached and the

contents of the block in memory (as well as all caches) is up-to-
date

Uncached No processor has a copy of the block (not valid in any
cache)

Exclusive: Only one processor (owner) has the block cached and
the contents of the block in memory is out-to-date (the block is
dirty)

In addition to cache state, must track which processors
have data when in the shared state

- usually bit vector, 1 if processor has copy

* Slide is a courtesy of Dave Patterson

Directory Protocol

Keep it simple(r):
* Writes to non-exclusive data => write miss

* Processor blocks until access completes
* Assume messages received and acted upon in order sent

Terms: typically 3 processors involved

* Local node where a request originates

* Home node where the memory location of an address resides

« Remote node has a copy of a cache block, whether exclusive or
shared

No bus and do not want to broadcast:

* interconnect no longer single arbitration point
- all messages have explicit responses

Example Directory Protocol

Message sent to directory causes two
actions:

- Update the directory

* More messages to satisfy request

We assume operations atomic, but they
are not; reality is much harder; must avoid
deadlock when run out of buffers in
network

Directory Protocol Messages
Type SRC DEST MSG

Read miss local cache home directory P,A
P has read miss at A; request data and make P a read sharer
Write miss local cache home directory P,A
P has write miss at A; request data and make P exclusive owner

Invalidate home directory remote cache A
Invalidate shared data at A
Fetch home directory remote cache A
Fetch block A home,; change A remote state to shared
Fetch/invalidate home directory remote cache A
Fetch block A home;, invalidate remote copy
Data value reply home directory local cache D
Return data value from home memory

Data write back remote cache home directory A,D
Write back data value for A

Cache Controller State
Machine

CPU read hit

States identical to
sSnoopy case
CPU read Shared

» Transactions very similar. (read only)

. Send read miss message
— Miss messages to home
directory

— Explicit invalidate & data
fetch requests

Invalidate

CPU write

Data write back
Send write miss message

State machine for
CPU requests for
iFnevt;?date each memory block

Exclusive

(read/write)
CPU write miss
CPU write hit

CPU read hit

Data write back
Write miss

* Slide is partially a courtesy of Dave Patterson

Directory Controller State
Machine

Same states and
structure as the
transition diagram for an
individual cache

* Actions:

— update of directory state

— send messages to
satisfy requests
 Tracks all copies of each

memory block

— Sharers set
implementation can use
a bit vector of a size of
processors for each
block

{}

Data value reply;

Sharers

write back

Data value reply;

Sharers = {P} Shared

(read only)

Write miss

{P}

Sharers

Exclusive
(read/write)

Read miss

Data value reply
Sharers = Sharers + {P}

State machine
for Directory,
requests for each
memory block

Fetch/invalidate
Data value reply
Sharers = {P}

* Slide is partially a courtesy of Dave Patterson

Example

Processor 1 Processor 2 Interconnect

Directory Memory

P1 P2 Bus

Memon

Directory

step

State| Addr|Valug State| Addn Valug Action Proc.| Addr| Value

{Procs}|Value |

Addr| State

P1: Write 10 to AT

P1: Read A1

P2: Read A1

P2: Write 20 to A1

P2: Write 40 to A2

Assumes memory
blocks A1 and A2
map to same cache
block

Data value reply;
Sharers = {P} Shared

Uncached (read only)

Read miss

Write miss

}

Data value reply;

Sharers

{P}

Data value reply
Sharers = Sharers + {P}

Sharers
Data write back

Fetch

Data '
invalidate

write back

Exclusive

(read/write) CPU write hit

CPU read hit
Write | Fetch/invalidate
miss / Data value reply
Sharers = {P}

CPU read hit

Invalidate

Shared

CPU read
(read only)

Send read miss message

CPU write

Read miss

Send write miss message

Exclusive

(read/write)
CPU write miss

Data write back
Write miss

* Slide is a courtesy of Dave Patterson

Processor 1

Example

Processor 2

Interconnect

Directory Memory

P1

P2

Bus

Memon

Directory

step

State| Addr

Valug State

AddrValue

Actior Proc. | Addr

Value

Value \

Addr|State| {Procs}

P1: Write 10 to AT

WrMs | Pl Al

Al | Ex |[{Pl}

Excl. Al | 10

P1 Al

DaRp

P1: Read A1

P2: Read A1

P2: Write 20 to A1

P2: Write 40 to A2

Assumes memory
blocks A1 and A2
map to same cache
block

Data value reply;

Uncached

Sharers = {P}

Shared
(read only)

Read miss

Write miss

}

Data value reply;

Sharers
Sharers = {P}

Data
write back

Exclusive
(read/write)

Data value reply
Sharers = Sharers + {P}

Fetch
invalidate

CPU write hit
CPU read hit

Write | Fetch/invalidate

Data write back

CPU read hit

Invalidate

Shared

CPU read
(read only)

Send read miss message

CPU write

Read miss

Send write miss message

Exclusive

(read/write)
CPU write miss

Data write back

miss / Data value reply
Sharers = {P}

Write miss

* Slide is a courtesy of Dave Patterson

Processor 1

Example

Processor 2

Interconnect

Directory Memory

P1

P2 Bus

Memon

Directory

step

State| Addr

Value

State| Addr Valug Actior

Proc.

Addr

Value \

Addr|State| {Procs}

Value

P1: Write 10 to AT

WrMs

P1

Al

Al | Ex |[{Pl}

Excl.

DaRp

P1

Al

P1: Read A1

Excl.

P2: Read A1

P2: Write 20 to A1

P2: Write 40 to A2

Assumes memory
blocks A1l and A2
map to same cache
block

Data value reply;

Uncached Sharers = {P}

Read miss

Write miss

}

Data value reply;

Sharers
Sharers = {P}

Data
write back

Exclusive
(read/write)

Write | Fetch/invalidate
miss / Data value reply
Sharers = {P}

Shared
(read only)

Data value reply
Sharers = Sharers + {P}

CPU read hit

Invalidate

Shared

CPU read
(read only)

Send read miss message

CPU write

Read miss

Data write back
Send write miss message

Fetch
invalidate

Exclusive

(read/write)
CPU write miss

CPU write hit

CPU read hit
Data write back
Write miss

* Slide is a courtesy of Dave Patterson

Example

Processor 1 Processor 2 Interconnect Directory Memory
P1 P2 Bus Directory Memon

step State| Addr| Valug State| Addr] Valug Actior] Proc. | Addr| Value| Addr| State| {Procs}| Value |
P1: Write 10 to A1 WrMs | P1 | Al Al | Ex |[{Pl}
Excl | Al | 10 DaRp | P1 | Al
P1: Read A1 .| Al 10

P2: Read A1 Al RdMs | P2 | Al
Al 10 Fich P1 Al Al
Darp | P2 | Al {P1.P2}

P2: Write 20 to A1

P2: Write 40 to A2

CPU read hit

Invalidate

*
® Data value reply;
” l"lte Ba(fk Sharers = {P} Shared oy Shared

Uncached
(read only) (read only)

Read miss Send read miss message

Assumes memory o s
blocks Al and A2

map to same cache .
block &

Data '
write back invalidate

}

Data value reply;
{P}

Read miss

Data value reply
Sharers = Sharers + {P}

Sharers

Sharers
Data write back
Send write miss message

Exclusive

Exclusive (read/write)

(read/write) CPU write hit
CPU read hit
Write | Fetch/invalidate Data write back
miss / Data value reply Write miss
Sharers = {P}

CPU write miss

* Slide is a courtesy of Dave Patterson

Example

Processor 1 Processor 2 Interconnect Directory Memory
P1 P2 Bus Directory Memon

step State| Addr| Valug State| Addr] Valug Actior] Proc. | Addr| Value| Addr| State| {Procs}| Value |
P1: Write 10 to A1 WrMs | P1 | Al Al | Ex |[{Pl}
Excl | Al | 10 DaRp | P1 | Al
P1: Read A1 .| Al 10

P2: Read A1 Al RdMs | P2 | Al
Al 10 Fich P1 Al Al
DaRp | P2 Al {P1.P2}

P2: Write 20 to A1 WirMs | P2 Al
Inval. | P1 Al . {P2}

P2: Write 40 to A2

CPU read hit

Invalidate

Data value reply;

Sharers = {P} Shared Shared
Uncached (read only) Chllead (readaroen\y)

Assumes memory
blocks A1 and A2 /
map to same cache
block

Write miss

}

Data value reply;

Sharers

Read miss

{P}

Data value reply
Sharers = Sharers + {P}

Sharers
Data write back
Send write miss message

Fetch

Data '
invalidate

write back

Exclusive

i read/write;
(i’;ﬂ;’;;f‘@) {) CPU write miss
CPU write hit
CPU read hit
Write | Fetch/invalidate Data write back
miss / Data value reply Write miss

Sharers = {P}

* Slide is a courtesy of Dave Patterson

Example

Processor 1 Processor 2 Interconnect Directory Memory
P1 P2 Bus Directory Memon

step State| Addr| Valug State| Addr] Valug Actior] Proc. | Addr| Value| Addr| State| {Procs}| Value |
P1: Write 10 to A1 WrMs | P1 | Al Al | Ex |{PL}
Excl | Al | 10 DaRp | P1 | Al
P1: Read A1 .| Al 10

P2: Read A1 Al RdMs | P2 | Al
Al 10 Ftch Pl Al Al

DaRp | P2 | Al (P1.P2]
P2: Write 20 to A1 . WrMs | P2 Al
Inval. | Pl Al {P2}

P2: Write 40 to A2 WrMs | P2 | A2 A2 {P2}
WrBk P2 Al Al . b

DaRp | P2 | A2 {P2}

CPU read hit

Invalidate

Data value reply; Shared
Sharers = {P} are Shared
Uncached (read only) Chllead (readaroen\y)

Assumes memory
blocks A1 and A2 /
map to same cache
block

Write miss

}

Data value reply;

Sharers

Read miss

{P}

Data value reply
Sharers = Sharers + {P}

Sharers
Data write back
Send write miss message

Fetch

Data '
invalidate

write back
Exclusive

. (read/write)
Exclusive CPU write miss

(read/write) CPU write hit
CPU read hit
Write | Fetch/invalidate Data write back
miss / Data value reply Write miss
Sharers = {P}

* Slide is a courtesy of Dave Patterson

