
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

Pipelining & Pipeline HazardsPipelining & Pipeline Hazards

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides
Some material adapted from David Culler, UC Berkeley CS252, Spr 2003 course slides, ©2002 UC Berkeley
Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

• Washer takes 30 min, Dryer takes 40 min, folding takes 20 min

• Sequential laundry takes 6 hours for 4 loads

• If they learned pipelining, how long would laundry take?

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

Slide: Dave Patterson

Time

A

B

C

D

T
a
s
k

O
r
d
e
r

Sequential LaundrySequential Laundry

• Pipelining means start work as soon as possible

• Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Slide: Dave Patterson

Pipelined LaundryPipelined Laundry

Pipelining LessonsPipelining Lessons

• Pipelining doesn’t help latency
of single task, it helps
throughput of entire workload

• Pipeline rate limited by slowest
pipeline stage

• Multiple tasks operating
simultaneously using different
resources

• Potential speedup = Number
pipe stages

• Unbalanced lengths of pipe
stages reduces speedup

• Time to “fill” pipeline and time
to “drain” it reduce speedup

• Stall for Dependencies

Time

6 PM 7 8 9

Slide: Dave Patterson

A

B

C

D

T
a
s
k

O
r
d
e
r

30 40 40 40 40 20

op target address

02631

6 bits 26 bits

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

MIPS Instruction SetMIPS Instruction Set

• RISC characterized by the following
features that simplify implementation:
– All ALU operations apply only on registers

– Memory is affected only by load and store

– Instructions follow very few formats and
typically are of the same size

MIPS Instruction FormatsMIPS Instruction Formats

• R-type (register)
– Most operations

• add $t1, $s3, $s4 # $t1 = $s3 + $s4

– rd, rs, rt all registers

– op always 0, funct gives actual function

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

MIPS Instruction FormatsMIPS Instruction Formats

• I-type (immediate)
– ALU with one immediate operand

• addi $t1, $s2, 32 # $t1 = $s2 + 32

– Load, store within ±215 of register
• lw $t0, 32($s2) # $s1 = $s2[32] or *(32+s2)

– Load immediate values
• lui $t0, 255 # $t0 = (255<<16)

• li $t0, 255

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

MIPS Instruction FormatsMIPS Instruction Formats

• I-type (immediate)
– PC-relative conditional branch
– ±215 from PC after instruction

• beq $s1, $s2, L1 # goto L1 if ($s1 = $s2)
• bne $s1, $s2, L1 # goto L1 if ($s1 ≠ $s2)

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

MIPS Instruction FormatsMIPS Instruction Formats

• J-type (jump)
– unconditional jump

• j L1 # goto L1

– Address is concatenated to top bits of PC
• Fixed addressing within 226

op target address

02631

6 bits 26 bits

Single-cycle ExecutionSingle-cycle Execution

! Figure: Dave Patterson

! Instruction fetch cycle (IF)

IR fl Mem[PC]; NPC fl PC + 4

À Instruction decode/register fetch cycle (ID)

A fl Regs[IR6..10]; B fl Regs[IR11..15]; Imm fl ((IR16)
16 ##IR16..31)

Ã Execution/effective address cycle (EX)
Memory ref: ALUOutput fl A + Imm;

Reg-Reg ALU: ALUOutput fl A func B;

Reg-Imm ALU: ALUOutput fl A op Imm;

Branch: ALUOutput fl NPC + Imm; Cond fl (A op 0)

Õ Memory access/branch completion cycle (MEM)
Memory ref: LMD fl Mem[ALUOutput] or Mem(ALUOutput] fl B;

Branch: if (cond) PC flALUOutput;

Œ Write-back cycle (WB)
Reg-Reg ALU: Regs[IR16..20] fl ALUOutput;

Reg-Imm ALU: Regs[IR11..15] fl ALUOutput;

Load: Regs[IR11..15] fl LMD;

Multi-Cycle Implementation ofMulti-Cycle Implementation of

MIPSMIPS

! À Õ Œ

Multi-cycle ExecutionMulti-cycle Execution

Ã
Figure: Dave Patterson

Stages of InstructionStages of Instruction

ExecutionExecution

• The load instruction is the longest

• All instructions follows at most the following five steps:
– Ifetch: Instruction Fetch

• Fetch the instruction from the Instruction Memory and update PC

– Reg/Dec: Registers Fetch and Instruction Decode

– Exec: Calculate the memory address

– Mem: Read the data from the Data Memory

– WB: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WBLoad

Slide: Dave Patterson

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB
Program Flow

Time

 Pipelining improves performance by increasing instruction throughput Pipelining improves performance by increasing instruction throughput

Instruction PipeliningInstruction Pipelining

• Start handling next instruction while the current
instruction is in progress

• Feasible when different devices at different stages

†

Time between instructionspipelined =
Time between instructionsnonpipelined

Number of pipe stages

Ideal and upper bound for speedup is number of stages in the pipelineIdeal and upper bound for speedup is number of stages in the pipeline

Instruction
fetch

Reg ALU
Data

access
Reg

8 ns
Instruction

fetch
Reg ALU

Data
access

Reg

8 ns
Instruction

fetch

8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program
execution
order
(in instructions)

Instruction
fetch

Reg ALU
Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch
Reg ALU

Data
access

Reg

2 ns
Instruction

fetch
Reg ALU

Data
access

Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Program
execution
order
(in instructions)

Time between first
& fourth instructions
is 3 ¥ 2 = 6 ns

Time between first
& fourth instructions
is 3 ¥ 8 = 24 ns

Example of InstructionExample of Instruction

PipeliningPipelining

Single CycleSingle Cycle

Clk

Load Store Waste

Cycle 1 Cycle 2

Figure: Dave Patterson

• Cycle time long enough for longest instruction

• Shorter instructions waste time

• No overlap

Multiple CycleMultiple Cycle

Figure: Dave Patterson

• Cycle time long enough for longest stage

• Shorter stages waste time

• Shorter instructions can take fewer cycles

• No overlap

Cycle 1

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Ifetch Reg Exec Mem

Load Store

Ifetch

R-type

Clk

PipelinePipeline

Figure: Dave Patterson

• Cycle time long enough for longest stage

• Shorter stages waste time

• No additional benefit from shorter instructions

• Overlap instruction execution

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Clk

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem WrStore

Ifetch Reg Exec Mem WrR-type

Pipeline PerformancePipeline Performance

• Pipeline increases the instruction throughput
– not execution time of an individual instruction

• An individual instruction can be slower:
– Additional pipeline control
– Imbalance among pipeline stages

• Suppose we execute 100 instructions:
– Single Cycle Machine

• 45 ns/cycle x 1 CPI x 100 inst = 4500 ns

– Multi-cycle Machine
• 10 ns/cycle x 4.2 CPI (due to inst mix) x 100 inst = 4200 ns

– Ideal 5 stages pipelined machine
• 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

• Lose performance due to fill and drain

Data Stationary

Pipeline Pipeline DatapathDatapath

• Every stage must be completed in one clock cycle to avoid stalls

• Values must be latched to ensure correct execution of
instructions

• The PC multiplexer has moved to the IF stage to prevent two
instructions from updating the PC simultaneously (in case of
branch instruction)

Pipeline Stage InterfacePipeline Stage Interface
Stage Any Instruction

IF
IF/ID.IR flMEM[PC] ;

IF/ID.NPC,PC fl (if ((EX/MEM.opcode == branch) & EX/MEM.cond)

{EX/MEM.ALUOutput } else { PC + 4 }) ;

ID
ID/EX.A = Regs[IF/ID. IR 6..10]; ID/EX.B flRegs[IF/ID. IR 11..15];

ID/EX.NPC flIF/ID.NPC ; ID/EX.IR flIF/ID.IR;

ID/EX.Imm fl (IF/ID. IR 16)
 16 ## IF/ID. IR 16..31;

ALU Load or Store Branch

EX

EX/MEM.IR = ID/EX.IR;

EX/MEM. ALUOutput fl
ID/EX.A func ID/EX.B;

Or

EX/MEM.ALUOutput fl
ID/EX.A op ID/EX.Imm;

EX/MEM.cond fl 0;

EX/MEM.IR fl ID/EX.IR;

EX/MEM.ALUOutput fl
ID/EX.A + ID/EX.Imm;

EX/MEM.cond fl 0;

EX/MEM.B flID/EX.B;

EX/MEM.ALUOutput fl
ID/EX.NPC + ID/EX.Imm;

EX/MEM.cond fl
(ID/EX.A op 0);

MEM

MEM/WB.IR flEX/MEM.IR;

MEM/WB.ALUOutput fl
EX/MEM.ALUOutput;

MEM/WB.IR fl EX/MEM.IR;

MEM/WB.LMD fl
Mem[EX/MEM.ALUOutput] ;

Or

Mem[EX/MEM.ALUOutput] fl
EX/MEM.B ;

WB

Regs[MEM/WB. IR 16..20] fl
EM/WB.ALUOutput;

Or

Regs[MEM/WB. IR 11..15] fl
MEM/WB.ALUOutput ;

For load only:

Regs[MEM/WB. IR 11..15] fl
MEM/WB.LMD;

Pipeline HazardsPipeline Hazards

• Cases that affect instruction execution
semantics and thus need to be detected and
corrected

• Hazards types
– Structural hazard: attempt to use a resource two

different ways at same time
• Single memory for instruction and data

– Data hazard: attempt to use item before it is ready
• Instruction depends on result of prior instruction still in the

pipeline

– Control hazard: attempt to make a decision before
condition is evaluated
• branch instructions

• Hazards can always be resolved by waiting

Visualizing PipeliningVisualizing Pipelining

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Slide: David Culler

Example: One MemoryExample: One Memory

Port/Structural HazardPort/Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

DMem

Structural Hazard
Slide: David Culler

Resolving Structural HazardsResolving Structural Hazards

1. Wait
– Must detect the hazard

• Easier with uniform ISA

– Must have mechanism to stall
• Easier with uniform pipeline organization

2. Throw more hardware at the problem
– Use instruction & data cache rather than

direct access to memory

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

Detecting and ResolvingDetecting and Resolving

Structural HazardStructural Hazard

Slide: David Culler

†

Pipelining Speedup =
Average instruction time unpipelined

Average instruction time pipelined

=
CPI unpipelined

CPI pipelined
¥

Clock cycle unpipelined

Clock cycle pipelined

†

Speedup =
CPI unpipelined

1 + Pipeline stall cycles per instruction
¥

Clock cycle unpipelined

Clock cycle pipelined

Stalls & Pipeline PerformanceStalls & Pipeline Performance

†

CPI pipelined = Ideal CPI+ Pipeline stall cycles per instruction

= 1+ Pipeline stall cycles per instruction

†

Ideal CPI pipelined = 1

†

Speedup =
Pipeline depth

1 + Pipeline stall cycles per instruction

Assuming all pipeline stages are balanced

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Data HazardsData Hazards
Time (clock cycles)

IF ID/RF EX MEM WB

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Slide: David Culler

Reg A
LU DMemIfetch Reg

I: add r1,r2,r3
J: sub r4,r1,r3

Three Generic Data HazardsThree Generic Data Hazards

• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes
it

• Caused by a “Data Dependence” (in compiler
nomenclature). This hazard results from an
actual need for communication.

Slide: David Culler

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data HazardsThree Generic Data Hazards

• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” in compilers.
– This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline
because:
– All instructions take 5 stages, and
– Reads are always in stage 2, and
– Writes are always in stage 5

Slide: David Culler

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” in compilers
– This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline:
– All instructions take 5 stages, and
– Writes are always in stage 5

• Do see WAR and WAW in more complicated
pipes

I: mul r1,r4,r3
J: add r1,r2,r3
K: sub r6,r1,r7

Three Generic Data HazardsThree Generic Data Hazards

Slide: David Culler

Time (clock cycles)

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Forwarding to Avoid DataForwarding to Avoid Data

HazardHazard

Slide: David Culler

HW Change for ForwardingHW Change for Forwarding

M
EM

/W
R

ID
/EX

EX
/M

EM

Data
Memory

A
LU

m
ux

m
ux

Registers

NextPC

Immediate

m
ux

Slide: David Culler

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even withData Hazard Even with

ForwardingForwarding

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU

DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Slide: David Culler

Resolving Load HazardsResolving Load Hazards

• Adding hardware? How? Where?

• Detection?

• Compilation techniques?

• What is the cost of load delays?

Slide: David Culler

Resolving the Load DataResolving the Load Data

HazardHazard
Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU DMemIfetch Reg

Ifetch A
LU DMemBubble Reg

RegIfetch A
LU DMem RegBubble

Ifetch A
LU DMem RegBubble Reg

How is this different from the instruction issue stall?
Slide: David Culler

Try producing fast code for

a = b + c;

d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW a,Ra

LW Re,e

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

Fast code:
LW Rb,b
LW Rc,c
LW Re,e
ADD Ra,Rb,Rc
LW Rf,f
SW a,Ra
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to AvoidSoftware Scheduling to Avoid

Load HazardsLoad Hazards

Slide: David Culler

Instruction Set ConnectionInstruction Set Connection

• What is exposed about this organizational
hazard in the instruction set?

• k cycle delay?
– bad, CPI is not part of ISA

• k instruction slot delay
– load should not be followed by use of the value in

the next k instructions

• Nothing, but code can reduce run-time delays

• MIPS did the transformation in the assembler

Slide: David Culler

Control Hazard on BranchesControl Hazard on Branches

Three Stage StallThree Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Slide: David Culler

Example: Branch Stall ImpactExample: Branch Stall Impact

• If 30% branch, Stall 3 cycles significant

• Two part solution:
– Determine branch taken or not sooner, AND

– Compute taken branch address earlier

• MIPS branch tests if register = 0 or ≠ 0

• MIPS Solution:
– Move Zero test to ID/RF stage

– Adder to calculate new PC in ID/RF stage

– 1 clock cycle penalty for branch versus 3

Slide: David Culler

Pipelined MIPS Pipelined MIPS DatapathDatapath

Add

Zero?

Figure: Dave Patterson

Four Branch HazardFour Branch Hazard

AlternativesAlternatives
1. Stall until branch direction is clear
2. Predict Branch Not Taken

– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch taken
– Advantage of late pipeline state update
– 47% MIPS branches not taken on average
– PC+4 already calculated, so use it to get next

instruction

3. Predict Branch Taken
– 53% MIPS branches taken on average
– But haven’t calculated branch target address in

MIPS
• MIPS still incurs 1 cycle branch penalty
• Other machines: branch target known before outcome Slide: David Culler

4. Delayed Branch
– Define branch to take place AFTER a following

instruction
branch instruction

sequential successor1
sequential successor2
........
sequential successorn

........
branch target if taken

– 1 slot delay allows proper decision and branch
target address in 5 stage pipeline

– MIPS uses this

Branch delay of length n

Four Branch HazardFour Branch Hazard

AlternativesAlternatives

Slide: David Culler

Delayed BranchDelayed Branch

• Where to get branch delay slot instructions?
– Before branch instruction

– From the target address
• only valuable when branch taken

– From fall through
• only valuable when branch not taken

– Canceling branches allow more slots to be filled

• Compiler effectiveness for single delay slot:
– Fills about 60% of branch delay slots

– About 80% of instructions executed in branch delay slots
useful in computation

– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines,
multiple instructions issued per clock (superscalar)

Slide: David Culler

Example: Evaluating BranchExample: Evaluating Branch

AlternativesAlternatives

Assume:
14% Conditional & Unconditional
65% Change PC

†

Pipeline speedup = Pipeline depth
1 + Pipeline stall CPI

= Pipeline depth
1 + Branch frequency¥Branch penalty

4.97

4.58

4.39

3.52

Pipeline
Speedup

1.411.0070.5Delayed branch

1.301.0911.0Predict not taken

1.251.1401.0Predict taken

1.001.4203.0Stall pipeline

Speedup
vs stall

CPIBranch
Penalty

Scheduling Scheme

Slide: David Culler

Best scenario Good for loops Good taken strategy

R4 must be
temp reg.

Scheduling Branch-Delay SlotsScheduling Branch-Delay Slots

Branch-Delay SchedulingBranch-Delay Scheduling

RequirementsRequirements
Scheduling

Strategy
Requirements Improves performance

when?

(a) From before Branch must not depend on the
rescheduled instructions

Always

(b) From target Must be OK to execute rescheduled
instructions if branch is not taken.
May need to duplicate instructions.

When branch is taken. May
enlarge programs if
instructions are duplicated.

(c) From fall
 through

Must be okay to execute instructions
if branch is taken.

When branch is not taken.

• Limitation on delayed-branch scheduling arise from:
– Restrictions on instructions scheduled into the delay slots
– Ability to predict at compile-time whether a branch is likely to

be taken

• May have to fill with a no-op instruction
– Average 30% wasted

• Additional PC is needed to allow safe operation in
case of interrupts (more on this later)

In
st

ru
ct

io
n

s
b

et
w

ee
n

m
is

p
re

d
ic

ti
o

n

Predict taken

Profile based

Static Branch PredictionStatic Branch Prediction

• Examination of program behavior
– Assume branch is usually taken based on statistics but

misprediction rate still 9%-59%

• Predict on branch direction forward/backward based
on statistics and code generation convention
– Profile information from earlier program runs

Exception TypesException Types

• I/O device request

• Breakpoint

• Integer arithmetic
overflow

• FP arithmetic
anomaly

• Page fault

• Misaligned memory
accesses

• Memory-protection
violation

• Undefined instruction

• Privilege violation

• Hardware and power
failure

Exception RequirementsException Requirements

• Synchronous vs. asynchronous
– I/O exceptions: Asyncronous

• Allow completion of current instruction

– Exceptions within instruction: Synchronous
• Harder to deal with

• User requested vs. coerced
– Requested predictable and easier to handle

• User maskable vs. unmaskable
• Resume vs. terminate

– Easier to implement exceptions that
terminate program execution

Stopping & RestartingStopping & Restarting

ExecutionExecution
• Some exceptions require restart of

instruction
– e.g. Page fault in MEM stage

• When exception occurs, pipeline control
can:
– Force a trap instruction into the pipeline next

IF
– Until the trap is taken, turn off all writes for

the faulting (and later) instructions
– OS exception-handling routine saves

faulting instruction PC

Stopping & RestartingStopping & Restarting

ExecutionExecution
• Precise exceptions

– Instructions before the faulting one complete
– Instructions after it restart
– As if execution were serial

• Exception handling complex if faulting
instruction can change state before exception
occurs

• Precise exceptions simplifies OS
• Required for demand paging

Pipeline exceptions must follow order of execution of faulting
instructions not according to the time they occur
Pipeline exceptions must follow order of execution of faulting
instructions not according to the time they occur

Exceptions in MIPSExceptions in MIPS

• Multiple exceptions might occur since multiple instructions are
executing
– (LW followed by DIV might cause page fault and an arith. exceptions

in same cycle)

• Exceptions can even occur out of order
– IF page fault before preceeding MEM page fault

Pipeline Stage Problem exceptions occurring

IF
Page fault on instruction fetch; misaligned
memory access; memory protection
violation

ID Undefined or illegal opcode

EX Arithmetic exception

MEM
Page fault on data fetch; misaligned
memory access; memory protection
violation

WB None

Precise Exception HandlingPrecise Exception Handling

• The MIPS Approach:
– Hardware posts all exceptions caused by a given

instruction in a status vector associated with the
instruction

– The exception status vector is carried along as the
instruction goes down the pipeline

– Once an exception indication is set in the exception
status vector, any control signal that may cause a
data value to be written is turned off

– Upon entering the WB stage the exception status
vector is checked and the exceptions, if any, will be
handled according the time they occurred

– Allowing an instruction to continue execution till the
WB stage is not a problem since all write operations
for that instruction will be disallowed

Instruction Set ComplicationsInstruction Set Complications

• Early-Write Instructions
– MIPS only writes late in pipeline
– Machines with multiple writes usually require

capability to rollback the effect of an instruction
• e.g. VAX auto-increment,

– Instructions that update memory state during
execution, e.g. string copy, may need to save &
restore temporary registers

• Branching mechanisms
– Complications from condition codes, predictive

execution for exceptions prior to branch

• Variable, multi-cycle operations
– Instruction can make multiple writes

