
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

Cost, Performance & BenchmarkingCost, Performance & Benchmarking

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides
Some material adapted from David Culler, UC Berkeley CS252, Spr 2002 course slides, © 2002 UC Berkeley
Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

OverviewOverview

• Previous Lecture
– What computer architecture
– Why it is important to study
– Organization and anatomy of computers
– Impact of microelectronics technology on

computers
– Evolution and generations of the computer industry

• This Lecture
– Cost considerations in computer design
– Why measuring performance is important
– Different performance metrics
– Performance comparison

Technology
Trends

Evaluate ExistingEvaluate Existing
Systems for Systems for
BottlenecksBottlenecks

Benchmarks

Simulate NewSimulate New
Designs andDesigns and

OrganizationsOrganizations

Workloads

Implement NextImplement Next
Generation SystemGeneration System

Implementation
Complexity

Slide: Dave Patterson

Cost and performance are the main evaluation metrics for a design qualityCost and performance are the main evaluation metrics for a design quality

Computer EngineeringComputer Engineering

MethodologyMethodology

CircuitsCircuits

2,400,000Very large-scale integrated circuit1995

900Integrated circuits1975

35Transistor1965

1Vacuum tube1951

Relative performance/unit costTechnology used in computersYear

• Need connectors & switches

• Generation defined by switch technology

Advances of the IC technology affect H/W and S/W design philosophyAdvances of the IC technology affect H/W and S/W design philosophy

Integrated CircuitsIntegrated Circuits

• Start with silicon (found in sand)
• Silicon does not conduct electricity well

– thus semiconductor

• Chemical process can transform tiny areas to
– Excellent conductors of electricity (like copper)
– Excellent insulator from electricity (like glass)
– Areas that can conduct or insulate under a special

condition (a switch)

• A transistor is simply an on/off switch
controlled by electricity

• Integrated circuits combines dozens to millions
of transistors in a chip

Slicer
20 to 30

processing steps

Dicer
Die

tester
Bond die

to package

Part
tester

Ship to
customers

Packaged dies Tested packaged dies

Patterned wafers
Individual dies

(one wafer)Tested dies

Silicon Ingot Blank wafers

Microelectronics ProcessMicroelectronics Process

Slice Fab

DiceTestPackage

Test Ship

†

IC Cost =
Die Cost + Testing Cost +Packing Cost

Final Test Yield

Slide: Dave Patterson

Integrated Circuits CostsIntegrated Circuits Costs

†

Die Cost =
Wafer Cost

Dies per Wafer ¥ Die Yield

Die cost roughly goes
with die area4

Die cost roughly goes
with die area4

†

Dies per Wafer =
p ¥ (Wafer diameter/2)2

 Die Area
-

p ¥ Wafer diameter

 2¥Die Area

†

Die Cost =
Wafer Cost

Dies per Wafer ¥ Die Yield

Slide: Dave Patterson

Die CostDie Cost

†

Die Yield = Wafer yield ¥
1

1+
Defects per unit area ¥ Die Area

a

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

a

†

Die Cost =
Wafer Cost

Dies per Wafer ¥ Die Yield

Figure: Dave Patterson

Die CostDie Cost

Slide: Dave Patterson

Real World ExamplesReal World Examples

Die
Cost

YieldDies/
Wafer

Area
(mm2)

Defect
/cm2

Wafer
cost

LayersChip

$4179%402961.5$15003Pentium

$27213%482341.6$17003SuperSPARC

$14919%532341.2$15003DEC Alpha

$7327%661961.0$13003HP PA 7100

$5328%1151211.3$17004PowerPC 601

$1254%181811.0$12003486DX2

$471%360431.0$9002386DX

From "Estimating IC Manufacturing Costs,” by Linley Gwennap,
Microprocessor Report, August 2, 1993, p. 15

Aside: Geometric ReasoningAside: Geometric Reasoning

• Accelerate triangle rendering by dividing
screen into W 5 H pixel regions (processors)

W

H

Aside: Geometric ReasoningAside: Geometric Reasoning

• Only render triangle in region hit by
triangle bounding box (size w 5 h)

Aside: Geometric ReasoningAside: Geometric Reasoning

• Triangle replicated for each region
overlapping triangle bounding box
– Like having N extra triangles

Aside: Geometric ReasoningAside: Geometric Reasoning

• Speedup limited by overlap factor
– Distribution of box center vs. replication

1x2x 2x

2x

2x

4x 4x

4x4x

†

Eyles formula :

w + W

W

Ê

Ë
Á

ˆ

¯
˜

h+ H

H

Ê

Ë
Á

ˆ

¯
˜

Costs and Trends in CostCosts and Trends in Cost

• Understanding trends in component
costs (how they will change over time) is
an important issue for designers

• Component prices drop over time
without major improvements in
manufacturing technology

What Affects CostWhat Affects Cost

1. Learning curve:
• The more experience in manufacturing a component, the

better the yield
• In general, a chip, board or system with twice the yield

will have half the cost.
• The learning curve is different for different components,

complicating new system design decisions

2. Volume
• Larger volume increases rate of learning curve and

manufacturing efficiency
• Doubling the volume typically reduces cost by 10%

3. Commodities
• Essentially identical products sold by multiple vendors in

large volumes
• Foil the competition and drive the efficiency higher and

thus the cost down

$/
D

R
A

M
 c

hi
p

A dollar in 1977 = $2.95 in 2001

Cost/MB = $500 in 1997

 = $0.35 in 2000

 = $0.08 in 2001
Demand exceeded supply
Ë slow price drop

Each generation drops in price by a factor of 10 to 30 over its lifetime

Cost Trends for DRAMCost Trends for DRAM

In
te

l L
is

t p
ric

e
fo

r
10

00
 u

ni
ts

 o
f t

he
 P

en
tiu

m
 I

II

Price drop due to yield enhancements

Cost Trends for ProcessorsCost Trends for Processors

 Component Cost

Direct Cost

 Gross Margin

 Average Discount

Avg. Selling Price

List Price

15% to 33%

 6% to 8%

34% to 39%

25% to 40%

Slidei: Dave Patterson

Cost vs. PriceCost vs. Price

• Component Cost
– Raw material cost for the system’s building blocks

• Direct Cost (add 25% to 40%)
– recurring costs: labor, purchasing, scrap, warranty

• Gross Margin (add 82% to 186%)
– nonrecurring costs: R&D, marketing, sales, equipment

maintenance, rental, financing cost, pretax profits, taxes

• Average Discount (add 33% to 66%)
– volume discounts and/or retailer markup

0%

20%

40%
60%

80%

100%

Mini W/S PC

Average Discount
Gross Margin
Direct Costs
Component Costs

Slide: Dave Patterson

Chip Area (mm2) Total Cost Price Comment

386DX 43 $9 $31
486DX2 81 $35 $245 NNoo CCoommppeettiittiioonn
PowerPC 601 121 $77 $280
DEC Alpha 234 $202 $1231 Recoup R&D?
Pentium 296 $473 $965

 Chip Prices (August 1993) for a volume of 10,000 units

Example: Price vs. CostExample: Price vs. Cost

The Role of PerformanceThe Role of Performance

• Hardware performance is key to the
effectiveness of the entire system

• Performance has to be measured and
compared
– Evaluate various design and technological

approaches

• Different types of applications:
– Different performance metrics may be appropriate
– Different aspects of a computer system may be

most significant

• Factors that affect performance
– Instruction use and implementation, memory

hierarchy, I/O handling

Criteria of performance evaluation differs among users and designersCriteria of performance evaluation differs among users and designers

Defining PerformanceDefining Performance

• Performance means different things to
different people

• Analogy from the airline industry:
– Cruising speed (How fast)

– Flight range (How far)

– Passengers (How many)

Airplane Passenger
capacity

Cruising range
(miles)

Cruising speed
(m.p.h)

Passenger throughput
(Passenger ¥ m.p.h)

Boeing 777 375 4630 610 228,750
Boeing 747 470 4150 610 286,700

BAC/Sud Concorde 132 4000 1350 178,200
Douglas DC-8-50 146 8720 544 79,424

Decreasing response time always improves throughputDecreasing response time always improves throughput

Performance MetricsPerformance Metrics

• Response (execution) time:
– Time between the start and completion of a task

– Measures user perception of the system speed

– Common in reactive and time critical systems,
single-user computer, etc.

• Throughput:
– Total number of tasks done in a given time

– Most relevant to batch processing (billing, credit
card processing, etc.)

– Mainly used for input/output systems (disk access,
printer, etc.)

Performance Metric ExamplesPerformance Metric Examples

• Replacing the processor of a computer
with a faster version
– Both response time AND throughput

• Adding additional processors to a
system that uses multiple processors for
separate tasks (e.g. handling of airline
reservations system)
– Throughput but NOT response time

†

Performance =
1

Execution time

Response-time MetricResponse-time Metric

• Maximizing performance means
minimizing response (execution) time

†

Speedup =
Performance (P2)

Performance (P1)
=

Execution time (P1)

Execution time (P2)

Response-time MetricResponse-time Metric

• Performance of Processor P2 is better
than P1 if
– for a given work load L

– P2 takes less time to execute L than P1

Performance(P2) > Performance(P1) w.r.t. L

Execution time(P2) < Execution time(P1)

• Relative performance: ratio for same
workload

 rate Clock
program a for cycles clock CPU

time cycle Clockprogram a for cycles clock CPUprogram a for time execution CPU

=

¥=

DesignerDesigner’’s Performances Performance

MetricsMetrics
• Users and designers use different metrics
• Designers look at the bottom line of program

execution

• To enhance the hardware performance,
designers focus on reducing the clock cycle
time and the number of cycles per program

• Many techniques to decrease the number of
clock cycles also increase the clock cycle time
or the average number of cycles per
instruction (CPI)

A program runs in 10 seconds on computer “A” with 400 MHz clock.

Want a computer “B” that could run the program in 6 seconds.

Substantial increase in the clock speed possible, but would cause computer
“B” to require 1.2 times as many clock cycles as computer “A”.

What should be the clock rate of computer “B”?

†

CPU time(A) =
clock cycles(A)

clock rate(A)
=

clock cycles(A)

400¥106 cyc /sec
= 10 sec

†

clock cycles(A) = 10 sec ¥ 400 ¥106 cyc/sec = 4 ¥109 cycles

†

6 seconds =
clock cycles(B)

clock rate(B)
=

1.2¥ clock cycles(A)

clock rate(B)
=

4.8 ¥109 cycles

clock rate(B)

†

clock rate(B) =
4.8¥106 cycles

6 second
= 800¥106 cycles/second

To get the clock rate of the faster computer, we use the same formula

ExampleExample

†

CPU time =
Instruction count ¥ CPI

Clock rate

cycle Clock
Seconds

nInstructio
 cycles Clock

Program
nsInstructio

time CPU ¥¥=

Component of performance Units of measure
CPU execution time for a program Seconds for the program
Instruction count Instructions executed for the program
Clock cycles per instructions (CPI) Average number of clock cycles/instruction
Clock cycle time Seconds per clock cycle
Clock rate Clock cycles per second

Calculation of CPU TimeCalculation of CPU Time

†

CPU time = Instruction count ¥ CPI¥ Clock cycle time

CPU Time (Cont.)CPU Time (Cont.)

• CPU execution time can be measured by
running the program

• Clock rate usually published by manufacturer
• Measuring CPI and instruction count non-trivial
• Instruction counts can be measured by

– software profiling
– an architecture simulator
– hardware counters on some architecture

• The CPI depends on many factors including
– processor structure
– memory system
– mix of instruction types
– implementation of these instructions

i

n

i
i CCPI ¥= Â

=1
cycles clock CPU

CPU Time (Cont.)CPU Time (Cont.)

• Designers sometimes use the following
formula:

– Ci executed of instructions of class i

– CPIi average cyc. per instruction in class i

– n number of instruction classes

We have two implementation of the same instruction set architecture.

Machine “A” has a clock cycle time of 1 ns and CPI of 2.0 for some program.

Machine “B” has a clock cycle time of 2 ns and CPI of 1.2 for the same.

Which machine is faster for this program and by how much?

Both execute the same instructions. Assume number of instructions is “N”,

CPU clock cycles (A) = N 5 2.0
CPU clock cycles (B) = N 5 1.2

CPU time (A) = CPU clock cycles (A) 5 Clock cycle time (A)
 = N 5 2.0 5 1 ns = 2 5 N ns

CPU time (B) = CPU clock cycles (B) 5 Clock cycle time (B)
 = N 5 1.2 5 2 ns = 2.4 5 N ns

Therefore machine A will be faster by the following ratio:

†

CPU Performance (A)

CPU Performance (B)
=

CPU time (B)

CPU time (A)
=

2.4 ¥ N ns

2 ¥ N ns
= 1.2

ExampleExample

A compiler designer is trying to decide between two code sequences for a
particular machine. The hardware designers have supplied the following facts:

For a particular high-level language statement, the compiler writer is
considering two code sequences that require the following instruction counts:

Which code sequence executes the fewest instructions? Which will be
faster? What is the CPI for each sequence?

Instruction class CPI for this instruction class
A 1
B 2
C 3

Instruction count for instruction classCode sequence
A B C

1 2 1 2
2 4 1 1

Comparing Code SegmentsComparing Code Segments

Instructions:

Sequence 1: 2 + 1 + 2 = 5 instructions 4
Sequence 2: 4 + 1 + 1 = 6 instructions

†

CiÂ

A compiler designer is trying to decide between two code sequences for a
particular machine. The hardware designers have supplied the following facts:

For a particular high-level language statement, the compiler writer is
considering two code sequences that require the following instruction counts:

Which code sequence executes the fewest instructions? Which will be
faster? What is the CPI for each sequence?

Instruction class CPI for this instruction class
A 1
B 2
C 3

Instruction count for instruction classCode sequence
A B C

1 2 1 2
2 4 1 1

Comparing Code SegmentsComparing Code Segments

Execution time:
Sequence 1: (2¥1) + (1¥2) + (2¥3) = 10 cycles

Sequence 2: (4¥1) + (1¥2) + (1¥3) = 9 cycles 4

†

CPIi ¥ CiÂ

A compiler designer is trying to decide between two code sequences for a
particular machine. The hardware designers have supplied the following facts:

For a particular high-level language statement, the compiler writer is
considering two code sequences that require the following instruction counts:

Which code sequence executes the most instructions? Which will be faster?
What is the CPI for each sequence?

Instruction class CPI for this instruction class
A 1
B 2
C 3

Instruction count for instruction classCode sequence
A B C

1 2 1 2
2 4 1 1

Comparing Code SegmentsComparing Code Segments

CPI:

Sequence 1: 10/5 = 2 cycles per instruction
Sequence 2: 9/6 = 1.5 cycles per instruction

†

CPU clock cycles Instruction count

The Role of PerformanceThe Role of Performance

• Hardware performance is key to the
effectiveness of the entire system

• Performance has to be measured and
compared
– Evaluate various design and technological

approaches

• Different types of applications:
– Different performance metrics may be appropriate
– Different aspects of a computer system may be

most significant

• Factors that affect performance
– Instruction use and implementation, memory

hierarchy, I/O handling

Ë Maximizing performance means

 minimizing response (execution) time

†

Performance =
1

Execution time

Compiler

Programming
Language

Application

Datapath

Control

Transistors Wires Pins

ISA

Function Units

(millions) of Instructions per second: MIPS
(millions) of (FP) operations per second: MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Operations per second

Designer

User

Figure: Dave Patterson

Metrics of PerformanceMetrics of Performance

rate Clock
CPIcount nInstructio

time CPU
¥

=

i

n

i
i CCPI ¥= Â

=1
cycles clock CPU

Where: Ci is the count of number of instructions of class i executed
 CPIi is the average number of cycles per instruction for that instruction class
 n is the number of different instruction classes

Calculation of CPU TimeCalculation of CPU Time

Instr. Count CPI Clock Rate

Program X

Compiler X X

Instruction Set X X

Organization X X

Technology X

CDC 6600
NU 1108

ATLAS

ICL 1907 1.1 ms

B5500

KDF9

Time
Instructions

executed
Code size in
instructions

Code size
in bits

12
11
10
9
8
7

6

5

4

3

2

1

Can Hardware-Can Hardware-Indep Indep MetricsMetrics

Predict Performance?Predict Performance?

Guiding principle is reproducibility (report environment & experiments setup)Guiding principle is reproducibility (report environment & experiments setup)

Hardware
Model number Powerstation 550
CPU 41.67-MHz POWER 4164
FPU (floating point) Integrated
Number of CPU 1
Cache size per CPU 64K data/8k instruction
Memory 64 MB
Disk subsystem 2 400-MB SCSI
Network interface N/A

Software
OS type and revision AIX Ver. 3.1.5
Compiler revision AIX XL C/6000 Ver. 1.1.5

AIX XL Fortran Ver. 2.2
Other software None
File system type AIX
Firmware level N/A

System
Tuning parameters None
Background load None
System state Multi-user (single-user login)

Performance ReportsPerformance Reports

†

CPU Performance (B)

CPU Performance (A)
=

Total execution time (A)

Total execution time (B)
=

1001

110
= 9.1

Execution time is the only valid and unimpeachable measure of performanceExecution time is the only valid and unimpeachable measure of performance

Computer A Computer B
Program 1 (seconds) 1 10
Program 2 (seconds) 1000 100
Total time (seconds) 1001 110

Comparing & SummarizingComparing & Summarizing

PerformancePerformance
• Wrong summary can be confusing

– A 10x B or B 10x A?

• Total execution time is a consistent measure

• Relative execution times for the same
workload can be informative

†

Weighted Arithmetic Mean (WAM)= wi ¥ Execution_Timei
i=1

n

Â

Norm. to A Norm. to B
Time on A Time on B A B A B

Program 1 1 10 1 10 0.1 1
Program 2 1000 100 1 0.1 10 1
AM of time or normalized time 500.5 55 1 5.05 5.05 1

Performance Summary (Cont.)Performance Summary (Cont.)

• Weighted arithmetic mean summarizes performance
while tracking execution time

• Weights can adjust for different running times,
balancing the contribution of each benchmark

• Never use AM for normalizing execution time relative
to a reference machine

†

Arithmetic Mean (AM) =
1

n
Execution_Timei

i=1

n

Â

†

wiÂ = 1; wi ≥ 0

†

Geometric Mean (Xi)

Geometric Mean (Yi)
= Geometric Mean

Xi

Yi

Ê

Ë
Á

ˆ

¯
˜

Performance Summary (Cont.)Performance Summary (Cont.)

• Geometric mean is suitable for reporting
average normalized execution time

†

Geometric Mean (GM) = Execution_Time_ratioi
i=1

n

’n

Norm. to A Norm. to B
Time on A Time on B A B A B

Program 1 1 10 1 10 0.1 1
Program 2 1000 100 1 0.1 10 1
AM of time or normalized time 500.5 55 1 5.05 5.05 1
GM of time or normalized time 31.62 31.62 1 1 1 1

The performance enhancement possible with a given improvement
is limited by the amount that the improved feature is used

†

Execution time after improvement =

Original execution time affected by the improvement

Amount of improvement

 + Execution time unaffected

AmdahlAmdahl’’s Laws Law

• A common theme in hardware design is to
make the common case fast
– Increasing the clock rate would not affect memory

access time

– Using a floating point processing unit does not
speed integer ALU operations

Example: Floating point instructions improved to run 2X;

but only 10% of actual instructions are floating point

 Exec-Timenew = Exec-Timeold x (0.9 + .1/2) = 0.95 x Exec-Timeold

 Speedupoverall = Exec-Timenew / Exec-Timeold = 1/0.95 = 1.053

†

Execution time after improvement =

Original execution time affected by the improvement

Amount of improvement

 + Execution time unaffected

AmdahlAmdahl’’s Laws Law

Performance BenchmarksPerformance Benchmarks

• Many widely-used benchmarks are small programs
that have significant locality of instruction and data
reference

• Universal benchmarks can be misleading since
hardware and compiler vendors might optimize for
ONLY these programs

• The best types of benchmarks are real applications —
reflect end-user interest

• Architectures might perform well for some applications
and poorly for others

• Compilation can boost performance by taking
advantage of architecture-specific features

• Application-specific compiler optimization are
becoming more popular

App. and arch. specific optimization can dramatically impact performanceApp. and arch. specific optimization can dramatically impact performance

0

100

200

300

400

500

600

700

800

tomcatvfppppmatrix300eqntottlinasa7doducspiceespressogcc

Benchmark
Compiler

Enhanced compiler

Effect of CompilationEffect of Compilation

The SPEC BenchmarksThe SPEC Benchmarks

• Standard Performance Evaluation Corporation

• Suite of benchmarks by a set of companies
– improve measurement and reporting of CPU

performance

• SPEC CPU2000 is the latest suite (for CPU)
– 12 integer programs (written in C)

– 14 floating-point (Fortran 77) programs

• Customized SPEC suites for other areas
– graphics, mail, web, JVM, …

machine measure the on time Execution
10/40 onSPARCstati SUN on time Execution

 ratio SPEC =

The SPEC BenchmarksThe SPEC Benchmarks

• Requires running applications on real
hardware
– memory system has a significant effect

• Report must include exact configuration

• Bigger numeric values of the SPEC ratio
indicate faster machine (performance =
1/execution time)

Pentium
Clock rate (MHz)

Pentium Pro

2

0

4

6

8

3

1

5

7

9

10

200 25015010050

Clock rate (MHz)

2

0

4

6

8

3

1

5

7

9

10

200 25015010050

Pentium

Pentium Pro

SPEC95 for Pentium andSPEC95 for Pentium and

Pentium ProPentium Pro

• Comments & Observations:
– The performance measured may be different on otherwise

identical HW with different memory systems or compilers
– At the same clock rate, the SPECint95 shows Pentium Pro

1.4-1.5 times faster / SPECfp95 shows 1.7-1.8 times faster
• mostly due to enhanced internal architecture

– Processor performance increase low relative to clock increase
• due to memory system

– Large applications are more sensitive to memory system

610 time Execution

count nInstructio
 MIPS) (native MIPS

¥
=

The use of MIPS is simple and intuitive, faster machines have bigger MIPSThe use of MIPS is simple and intuitive, faster machines have bigger MIPS

MIPS as a Performance MetricMIPS as a Performance Metric

• MIPS = Million Instructions Per Second
– one of the simplest metrics

– valid in a limited context

• There are three problems with MIPS:
– MIPS does not account for instruction capabilities

– MIPS can vary between programs on the same
computer

– MIPS can vary inversely with performance (see
next example)

Consider the machine with the following three instruction classes and CPI:

Suppose we measure the code for the same program from two compilers:

Assume that the machine’s clock rate is 500 MHz. Which code sequence will
execute faster according to execution time? According to MIPS?

Execution time:

†

Exection time =
CPU clock cycles

Clock rate
 ; CPU clock cycles = CPIi

i=1

n

Â ¥ Ci

Instruction class CPI for this instruction class
A 1
B 2
C 3

Instruction count in (billions) for each
instruction classCode from

A B C
Compiler 1 5 1 1
Compiler 2 10 1 1

ExampleExample

Sequence 1: CPU clock cycles = (5 ¥ 1 + 1 ¥ 2 + 1 ¥ 3) ¥ 109 = 10¥109 cyc.
Execution time = (10¥109) / (500¥106) = 20 seconds

Sequence 2: CPU clock cycles = (10 ¥ 1 + 1 ¥ 2 + 1 ¥ 3) ¥ 109 = 15¥109 cyc.
Execution time = (15¥109) / (500¥106) = 30 seconds

Consider the machine with the following three instruction classes and CPI:

Suppose we measure the code for the same program from two compilers:

Assume that the machine’s clock rate is 500 MHz. Which code sequence will
execute faster according to MIPS? According to execution time?

MIPS:

Instruction class CPI for this instruction class
A 1
B 2
C 3

Instruction count in (billions) for each
instruction classCode from

A B C
Compiler 1 5 1 1
Compiler 2 10 1 1

ExampleExample

Sequence 1: (5+1+1) / (20 ¥ 106) = 350

Sequence 2: (10+1+1) / (30 ¥ 106) = 400

610 time Execution

count nInstructio
 MIPS

¥
=

reference
unrated

reference MIPS
 time Execution

time Execution
 MIPS Relative ¥=

Native, Peak & Relative MIPSNative, Peak & Relative MIPS

• Peak MIPS:
– Choose instruction mix that maximizes the CPI

• Relative MIPS:
– Compares machines to an agreed-upon reference

machine (e.g. Vax 11/780)

– Comparisons even with different instruction sets

– However, reference machine may become obsolete
and no longer exist!

• Relative MIPS is practical for evolving design
of the same computer

Synthetic BenchmarksSynthetic Benchmarks

• Artificial programs that are constructed
to match the characteristics of large set
of programs

• Whetstone & Dhrystone popular
– Whetstone (scientific programs in Algol ‡

Fortran)
• “Whetstones per second” – the number of

executions of one iteration of the whetstone
benchmark

– Dhrystone (systems programs in Ada ‡ C)

Synthetic BenchmarksSynthetic Benchmarks

• Synthetic benchmarks suffer the following
drawbacks:
1.They may not reflect the user interest since they

are not real applications
2.They do not reflect real program behavior (e.g.

memory access pattern)
3.Compiler and hardware can inflate the performance

of these programs far beyond what the same
optimization can achieve for real-programs

Final RemarksFinal Remarks

• Designing for performance only without considering cost
is unrealistic

– For supercomputing performance is the primary and
dominant goal

– Low-end personal and embedded computers are
extremely cost driven

• Performance depends on three major factors

– number of instructions,

– cycles consumed by instruction execution

– clock rate

The art of computer design lies not in plugging numbers in a
performance equation, but in accurately determining how
design alternatives will affect performance and cost

The art of computer design lies not in plugging numbers in a
performance equation, but in accurately determining how
design alternatives will affect performance and cost

ConclusionConclusion

• Summary
– Performance reports, summary and comparison
(reproducibility, arithmetic and weighted arithmetic means)

– Widely used benchmark programs
(SPEC, Whetstone and Dhrystone)

– Example industry metrics
(e.g. MIPS, MFLOP, etc.)

– Increasing CPU performance can come from three
sources
1.Increases in clock rate
2.Improvement in processor utilization that lower the CPI
3.Compiler enhancement that lower the instruction count or

generate instructions with lower CPI

• Next Lecture: Instruction set architecture

