CMSC 611: Advanced
Computer Architecture

Parallel Computers

Definition: “A parallel computer is a collection of
processing elements that cooperate and communicate to
solve large problems fast.”

« Almasi and Gottlieb, Highly Parallel Computing ,1989

Parallel machines are expected to have a bigger role in
the future since:

* Microprocessors are likely to remain dominant in the uniprocessor
arena and the logical way to extend the performance is by
connecting multiple microprocessors
It is not expected that the microprocessor technology will keep the
pace of performance improvement given the increased level of
complexity
There has been steady progress in software development for
parallel architectures in recent years

* Slide is a courtesy of Dave Patterson

Questions about parallel

computers:
-How large a collection?

How powerful are processing elements?
How do they cooperate and communicate?
-How are data transmitted?

What type of interconnection?

What are HW and SW primitives for
programmers?

Does it translate into performance?

Level of Parallelism

Bit-level parallelism

* ALU parallelism: 1-bit, 4-bits, 8-blit, ...
Instruction-level parallelism (ILP)

* Pipelining, Superscalar, VLIW, Out-of-Order

execution
Process/Thread-level parallelism
* Divide job into parallel tasks

Job-level parallelism
* Independent jobs on one computer system

Applications

Scientific Computing

* Nearly Unlimited Demand (Grand Challenge):

* Successes in some real industries:
Petroleum: reservoir modeling
Automotive: crash simulation, drag analysis, engine

Aeronautics: airflow analysis, engine, structural mechanics
Pharmaceuticals: molecular modeling

App

Perf (GFLOPS)

Memory (GB)

48 hour weather

0.1

0.1

72 hour weather

3

1

Pharmaceutical design

100

10

Global Change, Genome

1000

1000

* Slide is a courtesy of Dave Patterson

Commercial Applications

Transaction processing
File servers

Electronic CAD simulation
Large WWW servers
WW\W search engines
Graphics

» Graphics hardware
* Render Farms

Framework

Extend traditional computer architecture with a
communication architecture

 abstractions (HW/SW interface)
* organizational structure to realize abstraction efficiently

Programming Model:

Multiprogramming: lots of jobs, no communication

Shared address space: communicate via memory
Message passing: send and receive messages

Data Parallel: several agents operate on several data sets
simultaneously and then exchange information globally and
simultaneously (shared or message passing)

Communication Abstraction:

- Shared address space: e.g., load, store, atomic swap

- Message passing: e.g., send, receive library calls

« Debate over this topic (ease of programming, scaling)
— many hardware designs 1:1 programming model

Taxonomy of Parallel

Architecture
Flynn Categories

» SISD (Single Instruction Single Data)
» MISD (Multiple Instruction Single Data)
« SIMD (Single Instruction Multiple Data)

« MIMD (Multiple Instruction Multiple Data)

Uniprocessor

SISD

Data
Stream

¥

Processor

Fy

Instruction
Stream

MISD

No commercial examples
Apply same operations to a set of data

* Find primes
* Crack passwords

Data
Stream

!

k4

b4

Processor

Processor

Processor

A

Instruction
Stream

A

Instruction

Stream

A

Instruction
Stream

Data
Stream

¥

SIMD

Vector/Array computers

Data
Stream

¥

Data
Stream

¥

Processor

Processor

Processor

]
Instruction

Stream

SIMD Arrays

Performance keys

« Utilization
« Communication

Memory

Controller

Program
Data

Data Parallel Model

Operations performed in parallel on each element of a
large regular data structure, such as an array

« One Control Processor broadcast to many processing elements
(PE) with condition flag per PE so that can skip

For distributed memory architecture data is distributed
among memories

- Data parallel model requires fast global synchronization

- Data parallel programming languages lay out data to processor

» Vector processors have similar ISAs, but no data placement
restriction

* Slide is a courtesy of Dave Patterson

SIMD Utilization

Conditional Execution

 PE Enable
— if (f<.5){...}

« Global PE enable check
— while (t>0){...}

Memory

Controller

Program
Data

Communication: MasPar MP1

Fast local X-net
Slow global routing

Memory

Controller

Program
Data

Comunication: CM2

Hypercube local routing
Wormbhole global routing

Memory

Controller

Program
Data

Communication: PixelFlow

Dense connections within block

 Single swizzle operation collects one word from each PE in block

— Designed for antialiasing
* NO inter-block connections
* NO global routing

Memory

Controller

Program
Data

Message Passing

Shared memory/distributed memory

+ Uniform Memory Access (UMA)
* Non-Uniform Memory Access (NUMA)

Data Data Data
Stream Stream Stream

Y b Y

Processor Processor Processor

x A x

Instruction Instruction Instruction
Stream Stream Stream

Can support either SW model on either HW basis

Message passing

Processors have private memories,
communicate via messages

Advantages:
* Less hardware, easier to design

* Focuses attention on costly non-local
operations

Message Passing Model

Each PE has local processor, data, (1/O)

* Explicit I/O to communicate with other PEs

 Essentially NUMA but integrated at |/O vs.
memory system

Free run between Send & Receive
« Send + Receive = Synchronization between
processes (event model)

— Send: local buffer, remote receiving process/port
— Receive: remote sending process/port, local buffer

History of message passing

Early machines
» Local communication
* Blocking send & receive

Later: DMA with non-blocking sends

« DMA for receive into buffer until processor
does receive, and then data is transferred to
local memory

Later still: SW libraries to allow arbitrary

communication

Example

IBM SP-2, RS6000 workstations in racks
* Network Interface Card has Intel 960

« 8X8 Crossbar switch as communication
building block

* 40 MByte/sec per link

Shared Memory

Processors communicate with shared
address space

Easy on small-scale machines

Advantages:

* Model of choice for uniprocessors, small-scale
multiprocessor

- Ease of programming

* Lower latency

- Easier to use hardware controlled caching
» Difficult to handle node failure

Centralized Shared Memory

Processor Processor Processor Processor

One or One or One or One or
more levels more levels more levels more levels
of cache of cache of cache of cache

Main memory IO system

Processors share a single centralized (UMA) memory through a bus
interconnect

Feasible for small processor count to limit memory contention

Centralized shared memory architectures are the most common form of
MIMD design

Distributed Memory

Frocessor Processor Processor Processor
+ cache + cache + cache + cache

Interconnection network

FProcessor Processor Processor Processor
+ cache + cache + cache + cache

Uses physically distributed (NUMA) memory to support large processor counts
(to avoid memory contention)

Advantages

 Allows cost-effective way to scale the memory bandwidth
* Reduces memory latency
Disadvantage

* Increased complexity of communicating data

Shared Address Model

Physical locations
- Each PE can name every physical location in the machine

Shared data

« Each process can name all data it shares with other processes

Data transfer
» Use load and store, VM maps to local or remote location

- Extra memory level: cache remote data
+ Significant research on making the translation transparent and
scalable for many nodes
— Handling data consistency and protection challenging
— Latency depends on the underlying hardware architecture (bus
bandwidth, memory access time and support for address
translation)
— Scalability is limited given that the communication model is so
tightly coupled with process address space

* Slide is a courtesy of Dave Patterson

Data Parallel Languages

SIMD programming
* PE point of view

- Data: shared or per-PE

— What data is distributed?
— What is shared over PE subset
— What data is broadcast with instruction stream?

- Data layout: shape [256][256]d;
- Communication primitives

- Higher-level operations
— Prefix sum: [i]r = Zj<i [j]d

- 1,1,234 - 1,1+41=2,24+2=4,4+3=7,7+4=11

Single Program Multiple Data

Many problems do not map well to SIMD
» Better utilization from MIMD or ILP

Data parallel model = Single Program
Multiple Data (SPMD) model

* All processors execute identical program

« Same program for SIMD, SISD or MIMD

« Compiler handles mapping to architecture

Three Fundamental Issues

1: Naming: how to solve large problem fast

what data is shared

how it is addressed

what operations can access data
how processes refer to each other

Choice of naming affects code produced by a compiler

« Just remember and load address or keep track of processor
number and local virtual address for message passing

Choice of naming affects replication of data
* In cache memory hierarchy or via SW replication and consistency

* Slide is a courtesy of Dave Patterson

Naming Address Spaces

Global physical address space

* any processor can generate, address and access it in a single
operation

Global virtual address space

* if the address space of each process can be configured to contain
all shared data of the parallel program

— memory can be anywhere: virtual address translation handles it
Segmented shared address space

* locations are named <process number, address> uniformly for all
processes of the parallel program

Three Fundamental Issues

2: Synchronization: To cooperate, processes must
coordinate

* Message passing is implicit coordination with transmission or
arrival of data

- Shared address — additional operations to explicitly coordinate:
e.g., write a flag, awaken a thread, interrupt a processor

* Slide is a courtesy of Dave Patterson

Three Fundamental Issues

3: Latency and Bandwidth
Bandwidth

Need high bandwidth in communication

Cannot scale, but stay close

Match limits in network, memory, and processor
Overhead to communicate is a problem in many machines

Latency

« Affects performance, since processor may have to wait
 Affects ease of programming, since requires more thought to
overlap communication and computation

Latency Hiding
* How can a mechanism help hide latency?

« Examples: overlap message send with computation, pre-fetch
data, switch to other tasks

Three Graphics Examples

Pixel-Planes 4

« 512x512 SIMD array (full screen)
Pixel-Planes 5

* Message-passing

- ~40i860 CPUs

« ~20 128x128 SIMD arrays (~80 tiles/screen)

Pixel-Flow

* Message-passing
« ~35 nodes, each with
— 2 HP-PA 8000 CPUs
— 128x64 SIMD array (~160 tiles/screen)

Pixel-Planes 4
Host Graphic System's

Transformation Unit o
Graphic ¢ User
Primitives Inputs

Planar Coeff's (A B .C)
_"—_H + Instructions

Translator I 4 Controller
r

Bit-Serial
Coeff s + Instr's

Pixel-Planes T_
Graphic System |
|

Frame Buffer
(Pxpl Memory Chip Array)

Yideo
Controller

Standard
RGB Ylideo

Fuchs, et al., "Fast Spheres, Shadows, Textures, Transparencies, and Image Enhancements in Pixel-Planes", SIGGRAPH 1985

Pixel-Planes 5

32 hits,
Hi1MHr

nox 12 hits,
200 W

£ Ciraphics

Ring ; r Proweessor

MNodes]
oy
i % S

[ia-8 o=

setwork Workstation

Frame '
Renderer Butfer .
g ""h‘

Fuchs, et al., "Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System Using Processor Enhanced Memories", SIGGRAPH 89

Pixel-Planes 5

Costom Memory Chips

"
Ml
HEE bilx

x 128 pixels

-
-
o
i
-

Henderer Board

H Hacking Store Controller

MMoomom o g

0000000 O Hacking Siomn
Image | 25 028 Array

Cenention - of Pixel 8 MB Video RAM

Coniroller Processors (4K Hilspixel)

000000 oo

00000000

-

.

Fuchs, et al., "Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System Using Processor Enhanced Memories", SIGGRAPH 89

Pixel-Flow

PixelFlow (upto9

. Flow Units
Chassis ;o chassis)

PixeiFlow
Chassis

GP GP || GP

I I

G elry Network & T —
sometry £ T 111

Image Composition ¢
Network RB |.ee | RB || RB

Eyles, et al., "PixelFlow: The Realization", Graphics Hardware 1997

Pixel-Flow

PA-8000 CPU PA-8000 CPU
2 MBytes cache 2 MBytes cache

Runway Bus: -
768 Mbytes / sec | ™

Rasterizing or shading
instructions, 400 |
Mbytes / sec

Geometry
y Processor Board

Main Memory:
64-512 Mbytes,
850 Mbytes / sec

GP to Geometry
Network: 240 Mbytes
1 sec

Rasterizer Board

Geometry Network:
800 Mbytes / sec ¢
cach direction

32 EMCs
{SIMD 8,192 PE array}

Image Composition DDDDDDDD
6.4 Gbytes INscc(cw:::l:l D D D D D D D D
e disection / DDDDDDDD \]

O0000000 |
iI @ il ii - ! @Slfh;{tle?l sec

8 TASICs

I I I | | | | i

- Geometry Network:
T s up to 240 Mbytes /
exture an sec
16-64 || 16-64 || 16-64 || 16-64
Frame Bsfg:' e || M || M || mB

|
{
|
,\ Video Interface: 400
i | Mpixels /sec in or out

1/0 or Video Daughter Card

1

Eyles, et al., "PixelFlow: The Realization", Graphics Hardware 1997

