
CMSC 611: Advanced
Computer Architecture

Parallel Systems

Parallel Computers

Definition: “A parallel computer is a collection of
processing elements that cooperate and communicate to
solve large problems fast.”
• Almasi and Gottlieb, Highly Parallel Computing ,1989

Parallel machines are expected to have a bigger role in
the future since:
• Microprocessors are likely to remain dominant in the uniprocessor

arena and the logical way to extend the performance is by
connecting multiple microprocessors

• It is not expected that the microprocessor technology will keep the
pace of performance improvement given the increased level of
complexity

• There has been steady progress in software development for
parallel architectures in recent years

* Slide is a courtesy of Dave Patterson

Questions about parallel
computers:

How large a collection?

How powerful are processing elements?

How do they cooperate and communicate?

How are data transmitted?

What type of interconnection?

What are HW and SW primitives for
programmers?

Does it translate into performance?

Level of Parallelism

Bit-level parallelism
• ALU parallelism: 1-bit, 4-bits, 8-bit, ...

Instruction-level parallelism (ILP)
• Pipelining, Superscalar, VLIW, Out-of-Order

execution

Process/Thread-level parallelism
• Divide job into parallel tasks

Job-level parallelism
• Independent jobs on one computer system

Applications

Scientific Computing
• Nearly Unlimited Demand (Grand Challenge):
• Successes in some real industries:

– Petroleum: reservoir modeling
– Automotive: crash simulation, drag analysis, engine
– Aeronautics: airflow analysis, engine, structural mechanics
– Pharmaceuticals: molecular modeling

* Slide is a courtesy of Dave Patterson

App Perf (GFLOPS) Memory (GB)
48 hour weather 0.1 0.1
72 hour weather 3 1
Pharmaceutical design 100 10
Global Change, Genome 1000 1000

Commercial Applications

Transaction processing

File servers

Electronic CAD simulation

Large WWW servers

WWW search engines

Graphics
• Graphics hardware

• Render Farms

Framework

Extend traditional computer architecture with a
communication architecture
• abstractions (HW/SW interface)
• organizational structure to realize abstraction efficiently

Programming Model:
• Multiprogramming: lots of jobs, no communication
• Shared address space: communicate via memory
• Message passing: send and receive messages
• Data Parallel: several agents operate on several data sets

simultaneously and then exchange information globally and
simultaneously (shared or message passing)

Communication Abstraction:
• Shared address space: e.g., load, store, atomic swap
• Message passing: e.g., send, receive library calls
• Debate over this topic (ease of programming, scaling)
→ many hardware designs 1:1 programming model

Taxonomy of Parallel
Architecture

Flynn Categories
• SISD (Single Instruction Single Data)

• MISD (Multiple Instruction Single Data)

• SIMD (Single Instruction Multiple Data)

• MIMD (Multiple Instruction Multiple Data)

* Slide is a courtesy of Dave Patterson

SISD

Uniprocessor

MISD

No commercial examples

Apply same operations to a set of data
• Find primes

• Crack passwords

SIMD

Vector/Array computers

SIMD Arrays

Memory

Program

Data

Controller

PE

Data

PE

Data
PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data
PE

Data

PE

Data

PE

Data

Performance keys
• Utilization
• Communication

Data Parallel Model

Operations performed in parallel on each element of a
large regular data structure, such as an array
• One Control Processor broadcast to many processing elements

(PE) with condition flag per PE so that can skip

For distributed memory architecture data is distributed
among memories
• Data parallel model requires fast global synchronization
• Data parallel programming languages lay out data to processor
• Vector processors have similar ISAs, but no data placement

restriction

* Slide is a courtesy of Dave Patterson

SIMD Utilization

Conditional Execution
• PE Enable

– if (f<.5) {...}
• Global PE enable check

– while (t > 0) {...}

Memory

Program

Data

Controller

PE

Data

PE

Data
PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data
PE

Data

PE

Data

PE

Data

PE

f=1

PE

f=2
PE

f=1.5

PE

f=0

PE

f=3

PE

f=-1

PE

f=1

PE

f=0

PE

f=2.5

PE

f=2

PE

f=.2

PE

f=-3

PE

f=0
PE

f=-1

PE

f=-6

PE

f=0

Communication: MasPar MP1

Fast local X-net

Slow global routing

Memory

Program

Data

Controller

PE

Data

PE

Data
PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data
PE

Data

PE

Data

PE

Data

Comunication: CM2

Hypercube local routing

Wormhole global routing

Memory

Program

Data

Controller

PE

Data

PE

Data
PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data
PE

Data

PE

Data

PE

Data

Communication: PixelFlow

Dense connections within block
• Single swizzle operation collects one word from each PE in block

– Designed for antialiasing
• NO inter-block connections
• NO global routing

Memory

Program

Data

Controller

PE

Data

PE

Data
PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data

PE

Data
PE

Data

PE

Data

PE

Data

MIMD

Message Passing

Shared memory/distributed memory
• Uniform Memory Access (UMA)
• Non-Uniform Memory Access (NUMA)

Can support either SW model on either HW basis

Message passing

Processors have private memories,
communicate via messages

Advantages:
• Less hardware, easier to design

• Focuses attention on costly non-local
operations

Message Passing Model

Each PE has local processor, data, (I/O)
• Explicit I/O to communicate with other PEs

• Essentially NUMA but integrated at I/O vs.
memory system

Free run between Send & Receive
• Send + Receive = Synchronization between

processes (event model)
– Send: local buffer, remote receiving process/port

– Receive: remote sending process/port, local buffer

History of message passing

Early machines
• Local communication

• Blocking send & receive

Later: DMA with non-blocking sends
• DMA for receive into buffer until processor

does receive, and then data is transferred to
local memory

Later still: SW libraries to allow arbitrary
communication

Example

IBM SP-2, RS6000 workstations in racks
• Network Interface Card has Intel 960

• 8X8 Crossbar switch as communication
building block

• 40 MByte/sec per link

Shared Memory

Processors communicate with shared
address space

Easy on small-scale machines

Advantages:
• Model of choice for uniprocessors, small-scale

multiprocessor

• Ease of programming

• Lower latency

• Easier to use hardware controlled caching

• Difficult to handle node failure

Centralized Shared Memory

Processors share a single centralized (UMA) memory through a bus
interconnect

Feasible for small processor count to limit memory contention

Centralized shared memory architectures are the most common form of
MIMD design

Distributed Memory

Uses physically distributed (NUMA) memory to support large processor counts
(to avoid memory contention)

Advantages

• Allows cost-effective way to scale the memory bandwidth
• Reduces memory latency
Disadvantage

• Increased complexity of communicating data

Shared Address Model

Physical locations
• Each PE can name every physical location in the machine

Shared data
• Each process can name all data it shares with other processes

Data transfer
• Use load and store, VM maps to local or remote location
• Extra memory level: cache remote data
• Significant research on making the translation transparent and

scalable for many nodes
– Handling data consistency and protection challenging
– Latency depends on the underlying hardware architecture (bus

bandwidth, memory access time and support for address
translation)

– Scalability is limited given that the communication model is so
tightly coupled with process address space

* Slide is a courtesy of Dave Patterson

Data Parallel Languages

SIMD programming
• PE point of view

• Data: shared or per-PE
– What data is distributed?

– What is shared over PE subset

– What data is broadcast with instruction stream?

• Data layout: shape [256][256]d;

• Communication primitives

• Higher-level operations
– Prefix sum: [i]r = ∑

j≤i
[j]d

– 1,1,2,3,4 → 1,1+1=2,2+2=4,4+3=7,7+4=11

Single Program Multiple Data

Many problems do not map well to SIMD
• Better utilization from MIMD or ILP

Data parallel model ⇒ Single Program
Multiple Data (SPMD) model
• All processors execute identical program

• Same program for SIMD, SISD or MIMD

• Compiler handles mapping to architecture

Three Fundamental Issues

1: Naming: how to solve large problem fast
• what data is shared
• how it is addressed
• what operations can access data
• how processes refer to each other

Choice of naming affects code produced by a compiler
• Just remember and load address or keep track of processor

number and local virtual address for message passing

Choice of naming affects replication of data
• In cache memory hierarchy or via SW replication and consistency

* Slide is a courtesy of Dave Patterson

Naming Address Spaces

Global physical address space
• any processor can generate, address and access it in a single

operation

Global virtual address space
• if the address space of each process can be configured to contain

all shared data of the parallel program
– memory can be anywhere: virtual address translation handles it

Segmented shared address space
• locations are named <process number, address> uniformly for all

processes of the parallel program

Three Fundamental Issues

2: Synchronization: To cooperate, processes must
coordinate
• Message passing is implicit coordination with transmission or

arrival of data
• Shared address → additional operations to explicitly coordinate:

e.g., write a flag, awaken a thread, interrupt a processor

* Slide is a courtesy of Dave Patterson

Three Fundamental Issues

3: Latency and Bandwidth

Bandwidth
• Need high bandwidth in communication
• Cannot scale, but stay close
• Match limits in network, memory, and processor
• Overhead to communicate is a problem in many machines

Latency
• Affects performance, since processor may have to wait
• Affects ease of programming, since requires more thought to

overlap communication and computation

Latency Hiding
• How can a mechanism help hide latency?
• Examples: overlap message send with computation, pre-fetch

data, switch to other tasks

Three Graphics Examples

Pixel-Planes 4
• 512x512 SIMD array (full screen)

Pixel-Planes 5
• Message-passing
• ~40 i860 CPUs
• ~20 128x128 SIMD arrays (~80 tiles/screen)

Pixel-Flow
• Message-passing
• ~35 nodes, each with

– 2 HP-PA 8000 CPUs
– 128x64 SIMD array (~160 tiles/screen)

Pixel-Planes 4

Fuchs, et al., "Fast Spheres, Shadows, Textures, Transparencies, and Image Enhancements in Pixel-Planes", SIGGRAPH 1985

Pixel-Planes 5

Fuchs, et al., "Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System Using Processor Enhanced Memories", SIGGRAPH 89

Johns Hopkins Department of Computer Science

Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Overall SystemOverall SystemOverall System

HIF

Pixel-Planes 5

Fuchs, et al., "Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System Using Processor Enhanced Memories", SIGGRAPH 89

Johns Hopkins Department of Computer Science

Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Pxpl5 Renderer BoardPxpl5Pxpl5 Renderer Renderer Board Board

Pixel-Flow

Eyles, et al., "PixelFlow: The Realization", Graphics Hardware 1997

PixelFlow ,!:z z”&
Chassis

per chassis)

Geometry Network

Image Composition

Network

Figure 1: Typical PixelFlow System.

1.2 System Operation

Individual Flow Units can be designated, by software, as one of

three types:

! Renderers (not to be confused with the general term

renderer above) process a portion of the database to

generate regions of pixel data ready for shading. The

Geometry Processor Board transforms primitives to
screen-space and sorts them into bins according to

screen region. The Rasterizer Board rasterizes primi-

tives one region at a time. After all renderers have proc-

essed a given region, the region is cornposited across the

Image-Composition Network and the composited pixel-

values are deposited onto one or more shaders.

! Shaders apply texture and lighting models to regions of

raw pixel data, producing RGB color values that are

forwarded to the frame buffer.

! Frame buffers send or receive video data via an

attached video adapter card.

To compute a frame, the GPs on each renderer first transform

their fraction of the primitives into screen coordinates and sort

them into bins corresponding to regions of the screen. The
renderers then process the regions one at a time, rasterizing all of

the primitives that affect the current region before moving on to
the next.

Once a given region has been rasterized on all of the renderers,

the composition network merges the pixel data together and loads

the region of composited pixel data onto a shader. Regions are

assigned to shaders in round-robin fashion, with each shader

processing every nth region. Shaders operate on entire regions in

parallel, to convert raw pixel attributes into final RGB values,

blend multiple samples together for antialiasing, and forward final

color values to the frame buffer for display.

1.3 Design Evolution

The PixelFlow architecture has evolved considerably since its

initial conception, described in [MOLN92]. PixelFlow was

initially developed at the University of North Carolina at Chapel

Hill as an NSF- and DARPA-sponsored research project. In 1994.

Division Ltd. of Bristol, UK acquired commercial rights to the

technology and established a laboratory in Chapel Hill to

58

complete development of the project. In mid-1996 this

laboratory and rights to the PixelFlow technology were acquired

by Hewlett-Packard. The final design is significantly faster, mom

complex, and technically more aggressive than originally

conceived.

The following sections describe the final PixelFlow architecture

in more detail. Special attention will be given to aspects of the

architecture that have not been described before.

2 ARCHITECTURAL FEATURES

PixelFlow was designed to demonstrate the advantages of imagc-

composition architectures, to provide a research platform for rcal-

time 3D graphics algorithms and applications, and to provide

workstation graphics capability with unprecedented levels of

performance and realism. In this section we describe its major

architectural features and the rationale under which they were

chosen.

2.1 Image Composition Architecture

PixelFlow’s most characteristic feature is that it is an imagc-

composition architecture. Image-composition is an object-parallel

rendering approach in which the primitives in the scene are

distributed over a parallel array of renderers, each of which is

responsible for generating a full-screen image of its fraction of

the primitives (Figure 2). To compute a frame, each renderer
computes a full-screen image of its fraction of the primitives. It

then feeds color and visibility information for its pixels into a

local compositor (C), which also receives a stream of pixels from

the compositors (and renderers) upstream. The compositor
selects the visible pixel from its two input ports and forwards it to

the compositors downstream. The compositors together form an

Image-Composition Network, the output of which contains the

pixels of the final image. The Image-Composition Network can

be built as a pipeline, as shown in Figure 2, or as a binary tree;

PixelFlow uses a pipeline, since it is easier to implement and the

additional latency is negligible.

The bandwidth in every link of the Image-Composition Network

is identical; it is determined by frame rate, screen size, and the

amount of data per pixel or sample, and is independent of the

number of polygons in the scene. Thus the network (and system)

can be extended to incorporate an arbitrary number of rcndcrcrs

Pixel-Flow

Eyles, et al., "PixelFlow: The Realization", Graphics Hardware 1997

- .~ _^ - - - . _ -.-- __... ---- - -.. - --

Rnsteriring or shading

instructions, 400 1 hlbytes I set

.,-

PA-8000 CPU 1
2 MBytes cache

Runway Bus: 1 768 hfbytes I set
.\ 4 i t.------ -

- .I_

‘----..

PA-8000 CPU -l
2 MBytes cache I

L------d

Geometry

* Processor Board

Rasterizer Board

Geometry Network: I

800 Mbytes I set (
L GeNle L- :

each direction 7

I
&

lmflge Composition

Network:

6.4 Gbytes I set each

direction

\I I I ----
nnni-

iMCS

12 PE array)

I/O or Video Daughter Card

_ __-. -. _-_- ---~^.__ __.---_

Figure 4: PixelFlow Flow Unit with CPUs and IO/Video adapter.

3.2 SIMD Pixel Processor Array

The heart of the Rasterizer Board is a SIMD array of 8,192

processing elements (PEs). This array is mapped to screen

regions of different sizes, depending on the number of samples

per pixel, as follows:

Samples per Pixel Region Size (pixels)

1 128x64

4 32x64

8 32x32

The PE array is divided into four modules, each tightly coupled to

R texture/video subsystem.

The SIMD army and texture/video subsystem operate under the

Video Interface: 400

hipixels I see in ot out

-

control of a pair of Image-Generation Controller chips (IGCs),

which perform cycle-by-cycle sequencing of the SIMD array and

provide data for the EMCs’ linear expression evaluator.

The PE array is implemented on 32 logic-enhanced memory chips

(EMCs), each containing 256 PEs. Figure 5 shows a block

diagram of an EMC.

Each PE consists of an arithmetic/logical unit (ALU) and 384

bytes of local memory. This includes 256 bytes of main memory,

and four 32-byte partitions associated with two I/O ports, the

Local Port and the Image Composition port. A hear expression

evuluufor computes values of the bilinear expression Ax+By+C in

parallel for every PE; the pair (x.y) is the address of each PE on a

subpixel resolution grid, and A. B, and C are user-specified as part
of the SIMD instruction stream. The ALU performs arithmetic

61

