# **CMSC 611: Advanced Computer Architecture**

**Interconnection Networks** 

## **Interconnection Networks**



Massively parallel processor networks (MPP)

- Thousands of nodes
- Short distance (<~25m)</li>
- Traffic among all nodes

#### Local area network (LAN)

- Hundreds of computers
- A few kilometers
- Many-to-one (clients-server)

Wide area network (WAN)

- Thousands of computers
- Thousands of kilometers

### **ABCs of Networks**



Rules for communication are called the "protocol", message header and data called a "packet"

- What if more than 2 computers want to communicate?
  - Need computer "address field" (destination) in packet
- What if packet is garbled in transit?
  - Add "error detection field" in packet (e.g., CRC)
- What if packet is lost?
  - Time-out, retransmit; ACK & NACK
- What if multiple processes/machine?
  - Queue per process to provide protection

#### **Performance Metrics**



Bandwidth: maximum rate of propagating information Time of flight: time for 1st bit to reach destination Overhead: software & hardware time for encoding/ decoding, interrupt handling, etc.

#### **Performance Measures**



# **Network Interface Issues**

Where to connect network to computer?

- Cache consistency to avoid flushes (⇒ memory bus)
- Low latency and high bandwidth (⇒ memory bus)
- Standard interface card? (⇒ I/O bus)
- Typically, MPP uses memory bus; while LAN, WAN connect through I/O bus



\* Slide is a courtesy of Dave Patterson

## **Network Interface Issues**

How to connect network to software?

- Programmed I/O (low latency)
- DMA? (best for large messages)
- Receiver interrupted or received polls?
- Avoid involving operating system in common case
- Avoid operating at non-cached memory speed (e.g., check network interface)

# Example: CM-5 Software Interface



\* Slide is a courtesy of Dave Patterson

CM-5 example (MPP)

- Allows sending message without involving the operating system
- Receiver can poll or use interrupts to detect messages
- Time per polling 1.6 µsecs
- Time per interrupt 19 µsecs
- Minimum time to handle message: 0.5 µsecs
- Enable/disable 4.9/3.8 µsecs

As rate of messages arriving changes, use polling or interrupt?

- Avoid enabling and disabling interrupts due to high cost
- Always enable interrupts, have interrupt routine poll until no messages pending
  - Low rate => interrupt
  - High rate => polling



Used by cable companies: high BW, good noise immunity, typically 10Mbit/sec over a kilometer

 $\times$ 

**Twisted Pair:** 

Copper, 1mm think, twisted to avoid antenna effect, suitable for telephone and LANs

#### **Network Media**



• Multimode light disperse (LED) allows 600 Mbit/sec for up to 2 Km

• Single mode single wave (laser) reaches gigabits/sec for hundreds of Km

# Connecting Multiple Computers

#### Shared Media vs. Switched

- Shared medium facilitates broadcasting and multicasting
- Aggregate BW in *switched* network is many times *shared*
  - point-to-point faster since no arbitration, simpler interface
  - switch increases latency

#### Shared network arbitration?

- Central arbiter for LAN?
- Listen to check if being used ("Carrier Sensing")
- Listen to check if collision ("Collision Detection")
- Random resend to avoid repeated collisions (not fair)
- OK if low utilization



While all nodes have to share 10 Mbit/ sec Ethernet connection, ATM can support multiple 155 Mbit/sec simultaneous transfers

# **Switch Topology**

Structure of the interconnect and determines

- Degree: number of links from a node
- Diameter: max number of links crossed between nodes
- Average distance: number of hops to random destination



Cross bar uses  $n^2$  switches and allows simultaneous routing of any permutation of traffic pattern among processor



Omega network uses ½ nlog2n switches each uses 4 internal small switches (total is less than cross bar) but restrict routes

### **Example: Fat-Tree Topology**



Increase the bandwidth via extra links at each level over a simple tree Intermediate switches have two upward links and 4 downward links Can handle multiple common communication patterns very well

# **Commercial MMP Topologies**



- Ensures fully connected network
- Increases availability through redundant paths
- Enhances performance via splitting traffic and avoiding contention



#### **Boolean hypercube tree of 16 nodes**

Generally n-dimensional interconnect for  $2^n$  nodes requiring n+1 ports per switches for the processor and nearest n neighbor nodes

# Connection-based Communication

Telephone: operator sets up connection between the caller and the receiver

- Once the connection is established, conversation can continue for hours
- Generally use circuit switching to establish connection between communicating parties
- Share transmission lines over long distances by using switches to multiplex several conversations on the same lines
- "Time division multiplexing" divide B/W transmission line into a fixed number of slots, with each slot assigned to a conversation
  Problem: lines busy based on number of conversations, not amount of information sent

Advantage: reserved bandwidth ensures quality of service

# Connectionless

## **Communication**

Every package of information must have an address

• **Packet**: one package of information

Each packet is routed to its destination by looking at its address

• Analogy, the postal system (sending a letter)

Also called "Statistical multiplexing" given the role of queuing theory in measuring performance

Circuit-based communication can be established on top of packet switched network

TCP/IP

Packet-based communication can be established over a circuit-switched network

e.g. UDP over ssh

# **Routing Messages**

**Shared Media**: broadcast to everyone and let the receiver pick it

Switched Media needs real routing since the path is not clear

- Source-based routing: message specifies path to destination (provides directions)
- Virtual Circuit: circuits established from source to destination, message picks the circuit to follow
- Destination-based routing: message specifies destination, switch must pick the path
  - **deterministic**: always follow same path after establishing one
  - **adaptive**: pick different paths to avoid congestion, failures
  - Randomized routing: pick between several good paths to balance network load

# **Routing Examples**

#### Mesh: dimension-order routing

- $(x_1, y_1) \rightarrow (x_2, y_2)$
- Deterministic
  - first x, then y
- Adaptive
  - At x,y, when  $x \neq x_2$  and  $y \neq y_2$

Pick least-congested direction
 Hypercube: edge-cube routing

- $X = x_0 x_1 x_2 \dots x_n$ ;  $Y = y_0 y_1 y_2 \dots y_n$
- R = X xor Y
- Deterministic
  - Traverse dimensions of differing address in order
- Adaptive
  - Choose 1-bit in direction of least congestion





# **Buffering Policy**

**Store-and-forward policy**: each switch waits for the full packet to arrive in switch before sending to the next switch (good for WAN)

- Latency is function of: number of intermediate switches multiplied by the size of the packet
- **Cut-through routing** or **worm-hole routing**: switch examines the header and then starts forwarding it immediately (common in MPP)
- Worm hole: when head of message is blocked, message stays strung out over the network, potentially blocking other messages (only buffer the piece of the packet that is sent between switches)
- Cut through: Tail continues when head is blocked, compressing the whole message into a single switch (Requires a buffer large enough to hold the largest packet)
- Latency is function of: time for 1st part of the packet to negotiate the switches + the packet size ÷ interconnect bandwidth

## **Congestion Control**

Connection based networks reserve bandwidth ahead of time and limit input to such capacity

Packet switched networks do not reserve bandwidth; this leads to contention

Contention not only increase latency unpredictably but also can cause deadlocks

Solution: prevent packets from entering until contention is reduced (e.g., freeway on-ramp metering lights)

### **Congestion Control Options**

Packet discarding: If packet arrives at switch and no room in buffer, packet is discarded (e.g., UDP)

Flow control: between pairs of receivers and senders; use feedback to tell sender when allowed to send next packet

- Back-pressure: separate wires to tell to stop (common in MPP)
- Window: give original sender right to send N packets before getting permission to send more; overlaps latency of interconnection with overhead to send & receive packet (e.g., TCP), adjustable window

Choke packets: Each packet received by busy switch in warning state sent back to the source via choke packet. Source reduces traffic to that destination by a fixed % (e.g., ATM)

## **Practical Issues**

#### Standardization

- Required for WAN and LAN but not MPP
  - + low cost (components used repeatedly)
  - + stability (many suppliers to chose from)
  - Time for committees to agree
  - When to standardize?
    - Before anything built? ⇒ Committee does design?
    - Too early suppresses innovation
- Fault Tolerance: Can nodes fail and still deliver messages to other nodes?

 Required for WAN and LAN and difficult to ensure in MPP Hot Insert: If the interconnection can survive a failure, can it also continue operation while a new node is added to the interconnection?

Required for WAN and LAN

#### **Examples**

| Interconnection | MPP  | LAN      | WAN |
|-----------------|------|----------|-----|
| Example         | CM-5 | Ethernet | ATM |
| Standard        | No   | Yes      | Yes |
| Fault Tolerant  | No   | Yes      | Yes |
| Hot Insert      | No   | Yes      | Yes |

# Internetworking

Internetworking allows computers on independent and incompatible networks to communicate

- Enabling technologies: software standards that allow reliable communications without reliable networks
- Hierarchy of SW layers (protocol stack), giving each layer responsibility for portion of overall communications task, called protocol families or protocol suites



#### **Protocol Stack**

Communication occurs logically at the same level of the protocol, called peer-to-peer, but is implemented via services at the lower level

Danger is each level increases latency if implemented as hierarchy (e.g., multiple check sums)



#### **Protocol Stack**



32 bits

\* Slide is a courtesy of Dave Patterson

### **OSI Layers**

#### **Open Systems Interconnect**

- Application (HTTP, SMTP)
- Presentation (ntoh, hton)
- Session (Named pipes, RCP)
- Transport (TCP, UDP)
- Network (IP)
- Data Link (Ethernet)
- Physical (IEEE 802)

## **Connecting Networks**

**Bridges**: connect LANs together, passing traffic from one side to another depending on the packet addresses

- operate at the Ethernet protocol level
- usually simpler and cheaper than routers

**Routers** or **Gateways**: connect networks and resolve incompatible addressing.

- Generally slower than bridges, they operate at the internetworking protocol (IP) level
- Routers divide the interconnect into separate smaller subnets, which simplifies manageability and improves security



#### **Example Networks**

|                           | MPP              | LAN              | WAN           |
|---------------------------|------------------|------------------|---------------|
|                           | IBM SP-2         | 100 Mb Ethernet  | ATM           |
| Length (meters)           | 10               | 200              | 100/1000      |
| Number data lines         | 8                | 1                | 1             |
| Clock Rate                | 40 MHz           | 100 MHz          | 155/622       |
| Switch?                   | Yes              | No               | Yes           |
| Nodes (N)                 | <sup>≤</sup> 512 | <sup>≤</sup> 254 | ≈ 10000       |
| Material                  | Copper           | Copper           | Copper/fiber  |
| Peak Link BW              | 320              | 100              | 155/622       |
| Latency (µsecs)           | 1                | 1.5              | 50            |
| Send+Receive              | 39               | 440              | 630           |
| Overhead (µsecs)          |                  |                  |               |
| Topology                  | Fat tree         | Line             | Star          |
| Connectionless?           | Yes              | Yes              | No            |
| Store & Forward?          | No               | No               | Yes           |
| <b>Congestion Control</b> | Back-pressure    | Carrier Sense    | Choke packets |
| Standard                  | No               | Yes              | Yes           |
| Fault Tolerance           | Yes              | Yes              | Yes           |