
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

Instruction Set ArchitectureInstruction Set Architecture

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides
Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

Lecture OverviewLecture Overview

• Last Week
– Different performance metrics

(response time, throughput, CPU time)
– Performance reports, summary and comparison

(Experiment reproducibility, arithmetic and weighted
arithmetic means)

– Widely used benchmark programs
(SPEC, Whetstone and Dhrystone)

– Example industry metrics
(e.g. MIPS, MFLOP, etc.)

• This Week
– Classifications of instruction set architectures
– Different addressing modes
– Instruction types, operands and operations

IntroductionIntroduction

• To command a computer's hardware, you must speak
its language

• Instructions: the “words” of a machine's language

• Instruction set: its “vocabulary

• The MIPS instruction set is used as a case study

instruction set

software

hardware

Figure: Dave Patterson

Instruction Set ArchitectureInstruction Set Architecture

• Once you learn one machine language, it is
easy to pick up others:
– Common fundamental operations
– All designer have the same goals: simplify building

hardware, maximize performance, minimize cost

• Goals:
– Introduce design alternatives
– Present a taxonomy of ISA alternatives

• + some qualitative assessment of pros and cons

– Present and analyze some instruction set
measurements

– Address the issue of languages and compilers and
their bearing on instruction set architecture

– Show some example ISA’s

• A good interface:
– Lasts through many implementations (portability,

compatibility)
– Is used in many different ways (generality)
– Provides convenient functionality to higher levels
– Permits an efficient implementation at lower levels

• Design decisions must take into account:
– Technology
– Machine organization
– Programming languages
– Compiler technology
– Operating systems

Interface

imp 1

imp 2

imp 3

use

use

use

T
im

e

Slide: Dave Patterson

Interface DesignInterface Design

Memory Memory ISAsISAs

• Terms
– Result = Operand <operation> Operand

• Stack
– Operate on top stack elements, push result

back on stack

• Memory-Memory
– Operands (and possibly also result) in

memory

RegisterRegister ISAs ISAs

• Accumulator Architecture
– Common in early stored-program computers when

hardware was expensive
– Machine has only one register (accumulator)

involved in all math & logic operations
– Accumulator = Accumulator op Memory

• Extended Accumulator Architecture (8086)
– Dedicated registers for specific operations, e.g

stack and array index registers, added

• General-Purpose Register Architecture (MIPS)
– Register flexibility
– Can further divide these into:

• Register-memory: allows for one operand to be in memory
• Register-register (load-store): all operands in registers

ISA OperationsISA Operations

Famous ISAFamous ISA

• Stack
• Memory-Memory
• Accumulator Architecture
• Extended Accumulator Architecture
• General-Purpose Register Architecture

Machine # general-purpose
registers

Architecture style Year

Motorola 6800 2 Accumulator 1974
DEC VAX 16 Register-memory, memory-memory 1977
Intel 8086 1 Extended accumulator 1978
Motorola 68000 16 Register-memory 1980
Intel 80386 32 Register-memory 1985
PowerPC 32 Load-store 1992
DEC Alpha 32 Load-store 1992

Other types of ArchitectureOther types of Architecture

• High-Level-Language Architecture
– In the 1960s, systems software was rarely written in

high-level languages
• virtually every commercial operating system before Unix

was written in assembly

– Some people blamed the code density on the
instruction set rather than the programming
language

– A machine design philosophy advocated making
the hardware more like high-level languages

– The effectiveness of high-level languages, memory
size limitation and lack of efficient compilers
doomed this philosophy to a historical footnote

Other types of ArchitectureOther types of Architecture

• Reduced Instruction Set Architecture
– With the recent development in compiler technology

and expanded memory sizes less programmers are
using assembly level coding

– Drives ISA to favor benefit for compilers over ease
of manual programming

• RISC architecture favors simplified hardware
design over rich instruction set
– Rely on compilers to perform complex operations

• Virtually all new architecture since 1982
follows the RISC philosophy:
– fixed instruction lengths, load-store operations, and

limited addressing mode

Compact CodeCompact Code

• Scarce memory or limited transmit time (JVM)

• Variable-length instructions (Intel 80x86)
– Match instruction length ot operand specification

– Minimize code size

• Stack machines abandon registers altogether
– Stack machines simplify compilers

– Lend themselves to a compact instruction encoding

– BUT limit compiler optimization

Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
 from Implementation

High-level Language Based Concept of a Family

(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(MIPS,SPARC,IBM RS6000, . . .1987)
Slide: Dave Patterson

Evolution of Instruction SetsEvolution of Instruction Sets

memory
addresses

Max. number
of operands

Examples

0 3 SPARC, MIPS, PowerPC, ALPHA

1 2 Intel 60X86, Motorola 68000

2 2 VAX (also has 3 operands format)

3 3 VAX (also has 2 operands format)

Effect of the number of memory operands:
Type Advantages Disadvantages

Reg-Reg (0,3) - Fixed length instruction encoding

- Simple code generation model

- Similar execution time (pipeline)

- Higher instruction count

- Some instructions are short leading to
 wasteful bit encoding

Reg-Mem (1,2) - Direct access without loading

- Easy instruction encoding

- Can restrict # register available for use

- Clocks per instr. varies by operand type

- Source operands are destroyed

Mem-Mem (3,3) - No temporary register usage

- Compact code

- Less potential for compiler optimization

- Can create memory access bottleneck

Register-Memory ArchRegister-Memory Arch

100

10

101

1

12

8

4

0

DataAddress

MemoryProcessor

Object
addressed

Aligned at
byte offsets

Misaligned at
byte offsets

Byte 1,2,3,4,5,6,7 Never

Half word 0,2,4,6 1,3,5,7

Word 0,4 1,2,3,5,6,7

Double word 0 1,2,3,4,5,6,7

Memory AddressingMemory Addressing

• The address of a word matches the byte address of
one of its 4 bytes

• The addresses of sequential words differ by 4 (word
size in byte)

• Words' addresses are multiple of 4 (alignment
restriction)
– Misalignment (if allowed) complicates memory access and

causes programs to run slower

Byte OrderByte Order

• Given N bytes, which is the most significant,
which is the least significant?
– “Big Endian”

• Leftmost / most significant byte = word address

– “Little Endian”
• Rightmost / least significant byte = word address

• Byte ordering can be as problem when
exchanging data among different machines

• Can also affect array index calculation or any
other operation that treat the same data a both
byte and word.

Addressing ModesAddressing Modes

• How to specify the location of an operand
(effective address)

• Addressing modes have the ability to:
– Significantly reduce instruction counts
– Increase the average CPI
– Increase the complexity of building a machine

• VAX machine is used for benchmark data
since it supports wide range of memory
addressing modes

• Can classify based on:
– source of the data (register, immediate or memory)
– the address calculation (direct, indirect, indexed)

Address. mode Example Meaning When used
Register ADD R4, R3 Regs[R4] = Regs[R4] +

Regs[R3]
When a value is in a register

Immediate ADD R4, #3 Regs[R4] = Regs[R4] + 3 For constants
Register indirect ADD R4, (R1) Regs[R4] = Regs[R4] +

Mem[Regs[R1]]
Accessing using a pointer or a
computed address

Direct or absolute ADD R4, (1001) Regs[R4] = Regs[R4] +
Mem[1001]

Sometimes useful for accessing
static data; address constant
may need to be large

Displacement ADD R4, 100 (R1) Regs[R4] = Regs[R4] +
Mem[100 + Regs[R1]]

Accessing local variables

Indexed ADD R4, (R1 + R2) Regs[R4] = Regs[R4] +
Mem[Regs[R1] +
Regs[R2]]

Sometimes useful in array
addressing: R1 = base of the
array: R2 = index amount

Autoincrement ADD R4, (R2) + Regs[R4] = Regs[R4] +
Mem[Regs[R2]]

Regs[R2] = Regs[R2] + d

Useful for stepping through
arrays within a loop. R2 points to
start of the array; each reference
increments R2 by d.

Auto decrement ADD R4, -(R2) Regs[R2] = Regs[R2] – d

Regs[R4] = Regs[R4] +
Mem[Regs[R2]]

Same use as autoincrement.
Autodecrement/increment can
also act as push/pop to
implement a stack

Scaled ADD R4, 100 (R2)
[R3]

Regs[R4] = Regs[R4] +
Mem[100 + Regs[R2] +
Regs[R3] * d]

Used to index arrays.

Example of Addressing ModesExample of Addressing Modes

Focus on immediate and
displacement modes since
they are used the most

Focus on immediate and
displacement modes since
they are used the most

Based on SPEC89 on VAX

Addressing Mode UseAddressing Mode Use

P
er

ce
n

ta
g

e
o

f
d

is
p

la
ce

m
en

t

Number of bits needed for a displacement value in SPEC2000 benchmark

Data is based on SPEC2000 on Alpha
(only 16 bit displacement allowed)

Displacement AddressingDisplacement Addressing

ModesModes
• The range of displacement supported

affects the length of the instruction

 Statistics are based on SPEC2000 benchmark on Alpha

Immediate Addressing ModesImmediate Addressing Modes

• Immediate values for what operations?

Measurements were taken on Alpha
(only 16 bit immediate value allowed)

P
er

ce
n

ta
g

e
o

f
Im

m
ed

ia
te

 V
al

u
es

Number of bits needed for a immediate values in SPEC2000 benchmark

Distribution of ImmediateDistribution of Immediate

ValuesValues
• Range affects instruction length

– Similar measurements on the VAX (with 32-bit immediate
values) showed that 20-25% of immediate values were longer
than 16-bits

Addressing Mode for SignalAddressing Mode for Signal

ProcessingProcessing
• DSP offers special addressing modes to

better serve popular algorithms

• Special features requires either hand
coding or a compiler that uses such
features

Fast Fourier Transform

0 (0002) Ë 0 (0002)

1 (0012) Ë 4 (1002)

2 (0102) Ë 2 (0102)

3 (0112) Ë 6 (1102)

4 (1002) Ë 1 (0012)

5 (1012) Ë 5 (1012)

6 (1102) Ë 3 (0112)

7 (1112) Ë 7 (1112)

Addressing Mode for SignalAddressing Mode for Signal

ProcessingProcessing
• Modulo addressing:

– Since DSP deals with
continuous data streams,
circular buffers common

– Circular or modulo
addressing: automatic
increment and decrement
/ reset pointer at end of
buffer

• Reverse addressing:
– Address is the reverse

order of the current
address

– Expedites access /
otherwise require a
number of logical
instructions or extra
memory accesses

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+

Concatenation

Summary of MIPS AddressingSummary of MIPS Addressing

ModesModes

Example:
Translation of a segment of a C program to MIPS assembly instructions:

C: f = (g + h) - (i + j)

(pseudo)MIPS:
add t0, g, h # temp. variable t0 contains "g + h"
add t1, i, j # temp. variable t1 contains "i + j"
sub f, t0, t1 # f = t0 - t1 = (g + h) - (i + j)

Operations of the ComputerOperations of the Computer

HardwareHardware
“There must certainly be instructions for performing the
 fundamental arithmetic operations.”

Burkes, Goldstine and Von Neumann, 1947

MIPS assembler allows only one instruction/line and ignore
comments following # until end of line

Operations in the InstructionOperations in the Instruction

SetSet
Operator type Examples

Arithmetic and logical Integer arithmetic and logical operations: add, and, subtract , or
Data Transfer Loads-stores (move instructions on machines with memory addressing)
Control Branch, jump, procedure call and return, trap
System Operating system call, Virtual memory management instructions
Floating point Floating point instructions: add, multiply
Decimal Decimal add, decimal multiply, decimal to character conversion
String String move, string compare, string search
Graphics Pixel operations, compression/decompression operations

• Arithmetic, logical, data transfer and control are almost
standard categories for all machines

• System instructions are required for multi-
programming environment although support for
system functions varies

• Others can be primitives (e.g. decimal and string on
IBM 360 and VAX), provided by a co-processor, or
synthesized by compiler.

Operations for Media & SignalOperations for Media & Signal

Process.Process.
• Partitioned Add:

– Partition a single register into multiple data
elements (e.g. 4 16-bit words in 1 64-bit register)

– Perform the same operation independently on each
– Increases ALU throughput for multimedia

applications

• Paired single operations
– Perform multiple independent narrow operations on

one wide ALU (e.g. 2 32-bit float ops)
– Handy in dealing with vertices and coordinates

• Multiply and accumulate
– Very handy for calculating dot products of vectors

(signal processing) and matrix multiplication

Rank 80x86 Instruction
Integer Average

(% total executed)
1 Load 22%
2 Conditional branch 20%
3 Compare 16%
4 Store 12%
5 Add 8%
6 And 6%
7 Sub 5%
8 Move register-register 4%
9 Call 1%

10 Return 1%
Total 96%

Make the common case fast by focusing on these operationsMake the common case fast by focusing on these operations

Frequency of OperationsFrequency of Operations

UsageUsage
• The most widely executed instructions are the

simple operations of an instruction set

• Average usage in SPECint92 on Intel 80x86:

Data is based on SPEC2000 on Alpha

Control Flow InstructionsControl Flow Instructions

• Jump: unconditional change in the control flow

• Branch: conditional change in the control flow

• Procedure calls and returns

Destination Address DefinitionDestination Address Definition

• PC-relative addressing
– Good for short position-independent forward &

backward jumps

• Register indirect addressing
– Good for dynamic libraries, virtual functions &

packed case statements

Data is based SPEC2000 on Alpha

Name How condition is tested Advantages Disadvantages
Condition
Code
(CC)

Special bits are set by ALU
operations, possibly under
program control

Sometimes condition
is set for free

CC is extra state. Condition
codes constrain instructions’
ordering since they pass info.
from one instruction to a branch

Condition
register

Test arbitrary register with
the result of a comparison

Simple Uses up a register

Compare
& branch

Compare is part of the
branch.

One instruction rather
than two for a branch

May be too much work per
instruction

Remember to focus
on the common case
Remember to focus

on the common case

Based on SPEC92 on MIPS

Condition EvaluationCondition Evaluation

Data is based on SPEC2000 on Alpha

Different benchmark and
machine set new design priority

Different benchmark and
machine set new design priority

 DSPs support repeat instruction for for loops (vectors) using 3 registers

Frequency of Types ofFrequency of Types of

ComparisonComparison

Type and Size of OperandsType and Size of Operands

• Operand type encoded in instruction opcode
– The type of an operand effectively gives its size

• Common types include character, half word
and word size integer, single- and double-
precision floating point
– Characters are almost always in ASCII, though 16-

bit Unicode (for international characters) is gaining
popularity

– Integers in 2’s complement

– Floating point in IEEE 754

Unusual TypesUnusual Types

• Business Applications
– Binary Coded Decimal

(BCD)
• Exactly represents all

decimal fractions (binary
doesn’t!)

• DSP
– Fixed point

• Good for limited range
numbers: more mantissa bits

– Block floating point
• Single shared exponent for

multiple numbers

• Graphics
– 4-element vector operations

(RGBA or XYZW)
• 8-bit, 16-bit or single-

precision floating point

8-bit exponent8-bit exponent
24-bit mantissa24-bit mantissa

fixed exponentfixed exponent
32-bit mantissa32-bit mantissa

Size of OperandsSize of Operands

• Double-word: double-precision floating point +
addresses in 64-bit machines

• Words: most integer operations + addresses in 32-bit
machines

• For the mix in SPEC, word and double-word data
types dominates

Frequency of reference by size
based on SPEC2000 on Alpha

Example:

 Assembly: ADD $t0, $s1, $s2

 M/C language (binary): 000000 00001 00010 00000 00000 100000

0000 0000 0010 0010 0000 0000 0010 0000

 M/C language (hex): 0x00220020

Note: MIPS compiler by default maps $s0,…,$s7 to reg. 16-23 and $t0,…,$t7 to reg. 8-15

Instruction RepresentationInstruction Representation

• All data in computer systems is represented in binary

• Instructions are no exception

• The program that translates the human-readable code
to numeric form is called an Assembler

• Hence machine-language or assembly-language

Encoding an Instruction SetEncoding an Instruction Set

• Affects the size of the compiled program
• Also complexity of the CPU implementation
• Operation in one field called opcode
• Addressing mode in opcode or separate field
• Must balance:

– Desire to support as many registers and addressing
modes as possible

– Effect of operand specification on the size of the
instruction (and program)

– Desire to simplify instruction fetching and decoding
during execution

• Fixed size instruction encoding simplifies CPU
design but limits addressing choices

Encoding ExamplesEncoding Examples

MIPS Instruction FormatsMIPS Instruction Formats

opcodes
 000 001 010 011 100 101 110 111

000 R-type j jal beq bne blez bgtz
001 addi addiu slti sltiu andi ori xori
010
011 llo lhi trap
100 lb lh lw lbu lhu
101 sb sh sw
110

111

funct codes
 000 001 010 011 100 101 110 111

000 sll srl sra sllv srlv srav
001 jr jalr
010 mfhi mthi mflo mtlo
011 mult multu div divu
100 add addu sub subu and or xor nor
101 slt sltu
110

111

The Stored Program ConceptThe Stored Program Concept

• Today’s computers are
build on two key
principles :
– Instructions are

represented as numbers
– Programs can be stored

in memory to be read or
written just like numbers

• Memory can contain:
– the source code for an

editor
– the compiled m/c code for

the editor
– the text that the compiled

program is using
– the compiler that

generated the code

Processor

Accounting program
(machine code)

Editor program
(machine code)

C compiler
(machine code)

Payroll data

Book text

Source code in C
for editor program

Memory

ConclusionConclusion

• Summary
– Type and size of operands

• (common data types, effect of operand size on complexity)

– Encoding the instruction set
• (Fixed, variable and hybrid encoding, stored program)

• Next Week
– Role and effect of compilers on ISA
– Pipelined execution of instructions
– Pipeline hazards

