
CMSC 611: Advanced 
Computer Architecture

I/O and Storage
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Computer Input/Output

• I/O Interface

– Device drivers

– Device controller

– Service queues

– Interrupt handling

• Design Issues

– Performance

– Expandability

– Standardization

– Resilience to failure

• Impact on Tasks

– Blocking conditions

– Priority inversion

– Access ordering



Suppose we have a benchmark that executes in 100 seconds of elapsed time, where 90 
seconds is CPU time and the rest is I/O time. If the CPU time improves by 50% per year 
for the next five years but I/O time does not improve, how much faster will our program 
run at the end of the five years?

Impact of I/O on System 
Performance

Over five years:

CPU improvement = 90/12 = 7.5     BUT    System improvement = 100/22 = 4.5

Answer:  Elapsed Time  =  CPU time  +  I/O time
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I/O Device Examples

* Slide is courtesy of Dave Patterson 

Device Behavior Partner Data Rate (KB/sec)

Keyboard Input Human 0.01

Mouse Input Human 0.02

Line Printer Output Human 1.00

Floppy disk Storage Machine 50.00

Laser Printer Output Human 100.00

Optical Disk Storage Machine 500.00

Magnetic Disk Storage Machine 5,000.00

Network-LAN Input or Output Machine 20 – 1,000.00

Graphics Display Output Human 30,000.00



Connecting I/O Devices

• A bus is a shared communication link, which uses one 
set of wires to connect multiple subsystems

• The two major advantages of the bus organization are:
– Versatility: adding new devices and moving current ones 

among computers
– Low cost: single set of wires are shared in multiple ways

• The major disadvantage of a bus is that it creates a 
communication bottleneck possibly limiting throughput

• The maximum bus speed is largely limited by physical 
factors: the length of the bus and the number of 
devices

• Increasing bus bandwidth (throughput) can be 
increased using buffering which slow down bus access 
(response time)



Types of Buses

1. Processor-memory (local)  bus:
– Generally short and high speed to maximize the bandwidth

2. I/O Bus
– Lengthy and supports multiple data rates and devices
– Must handle wide range of device latency, bandwidth and 

characteristics

3. Backplane Bus
– Received that name because they lay in the back of the 

chassis structure
– Allows memory, processor and I/O devices to be connected
– Requires additional logic to interface to local and I/O buses

• Local buses are usually design-specific while I/O and 
backplane buses are portable and often follow 
industry-recognized standard

• A system can use one backplane or a combination of 
all three



Bus Configurations



Bus Control

• Synchronous Bus:
– Clock based protocol and time-based control lines
– Simple interface logic and fast bus operations
– Every device on the bus must run at the same clock rate
– Because clock skew, synchronous busses cannot be long
– Local buses are often synchronous



Bus Control

• Asynchronous Bus:
– Not clock-based, can accommodate a wide variety of devices
– Not limited in length because of clock skew
– Uses a handshaking protocol to ensure coordination among 

communicating parties
– Requires additional control lines and logic to manage bus 

transactions



One synchronous bus has a clock cycle time of 50 ns with each bus transmission taking 1 
clock cycle. Another asynchronous bus requires 40 ns per handshake. The data portion of 
both is 32-bit wide. Find the bandwidth of each bus for one-word reads from 200-ns memory.

Answer:

Bus Performance Example

The step for the synchronous bus are:

1. Send the address to memory: 50 ns

2. Read the memory: 200 ns

3. Send the data to the device: 50 ns

The maximum bandwidth is 4 bytes every 300 ns ⇒

300 ns

4 bytes

300 ns
=

4 MB

0.3 sec
= 13.3 MB/sec

The step for the asynchronous bus are:

1. Memory read address when seeing ReadReq : 40 ns

2,3,4. Data ready & handshake: max(3×40 ns, 200 ns)= 200 ns

5,6,7. Read & Ack. : 3 × 40 ns = 120 ns

The maximum bandwidth is 4 bytes every 360 ns ⇒

360 ns

4 bytes

360 ns
=

4 MB

0.36 sec
= 11.1 MB/sec



Increasing Bus Bandwidth 

• Much of bus bandwidth is decided by the protocol and timing 
characteristics

• The following are other factors for increasing the bandwidth:
– Data bus width: 

• Transfers multiple words requires fewer bus cycles
• Increases the number of bus lines (expensive!)

– Multiplexing Address & data line: 
• Uses separate lines for data and address speeds up 

transactions
– Simplifies the bus control logic
– Increases the number of bus lines

– Block transfer: 
• Transfers multiple words in back-to-back bus cycles 

without releasing the bus or sending new address
• Increases response time since transactions will be longer
• Increases complexity of the bus control logic



Bus Master

• Single master

– Bus master (e.g. processor) controls all bus 

access

– Bus slave (e.g. device or memory) only 

responds to requests

• Multiple master

– Many devices can initiate bus transaction

– Bus control logic & protocol resolves 

conflicts



Bus Arbitration

• Bus arbitration coordinates bus usage 
among multiple devices using request, 
grant, release mechanism

• Arbitration usually tries to balance two 
factors in choosing the granted device:
– Devices with high bus-priority should be 

served first

– Maintaining fairness to ensure that no 
device will be locked out from the bus

• Arbitration time is an overhead
– Want to minimize



• Distributed arbitration by self-selection: (e.g. NuBus used on 
Apple Macintosh)

– Uses multiple request lines for devices  

– Devices requesting the bus determine who will be granted 
access

– Devices associate a code with their request indicating their 
priority

– Low priority devices leave the bus if they notice a high priority 
requester

• Distributed arbitration by collision detection: (e.g. Ethernet)

– Devices independently request the bus and assume access

– Simultaneous requests results in a collision

– A scheme for selecting among colliding parties is used

• Ethernet: back off and try again later

Arbitration Schemes



Arbitration Schemes (Cont.)

• Daisy chain arbitration:  (e.g. VME bus)
– The bus grant line runs through devices from highest priority 

to lowest
– High priority devices simply intercept the grant signal and 

prevent the low priority device from seeing the signal
– Simple to implement (use edge triggered bus granting)
– Low priority devices can starve (some designs prevent bus 

usage in two successive clock cycles)
– Limits the bus speed (grant signals take long to reach the 

last device in the chain)
– Allow fault propagation 

• (failure might lock the bus) 



Arbitration Schemes (Cont.)

• Centralized, parallel arbitration: (e.g. PCI bus)
– Uses multiple request-lines and devices independently 

request bus (one line / device)
– A centralized arbiter selects a device and notifies it to be the 

bus master
– The arbiter can be a bottleneck for bus usage



Bus Standards

• Standardizing the bus specifications ensure compatibility and portability of 
peripherals among different computers

• Popularity of a machine can make its I/O bus a de facto standard, e.g. 
IBM PC-AT bus

• Two examples of widely known bus standards are Small Computer 
Systems Interface (SCSI), and Peripheral Computer Interface (PCI)



I/O Devices’ Interface

• Special I/O instructions: (Intel 80X86, IBM 370)
– Specify both the device number and the command word

• Device number / address on I/O bus
• Command word / data on I/O bus
• Each devices maintain status register to indicate progress 

– Instructions are privileged to prevent user tasks from directly 
accessing the I/O devices

• Memory-mapped I/O: (Motorola/IBM PowerPC)
– Portions of the address space are assigned to I/O devices
– Read and writes to those addresses are interpreted as 

commands to the I/O devices
– User programs are prevented from issuing I/O operations 

directly:
• The I/O address space is protected by the address 

translation

* Slide is courtesy of Dave Patterson 



Operating System’s Role 

• Operating system acts as an interface between I/O 
hardware and programs

• Important characteristics of the I/O systems:
– The I/O system is shared by multiple programs
– I/O systems often use interrupts to communicate information 

about I/O
• Interrupts must be handled by OS because they cause a 

transfer to supervisor mode
– The low-level control of an I/O device is complex:

• Managing a set of concurrent events
• The requirements for correct device control are very 

detailed



• Provide protection to shared I/O resources
– Guarantees that a user’s program cannot access other 

processes I/O

• Provides abstraction for accessing devices:
– Supply routines that handle low-level device operation
– Handles the interrupts generated by I/O devices
– Provide equitable access to the shared I/O resources

• All user programs must have equal access to the I/O 
resources

– Schedule accesses in order to enhance system throughput 
allowed set of I/O services

Operating System’s 
Responsibilities



Communicating with I/O 
Devices

•  The OS needs to know when:
–  The I/O device has completed an operation
–  The I/O operation has encountered an error

•  This can be accomplished in two different ways:
–  Polling:

• The I/O device puts information in a status register
• The OS periodically check the status register

–  I/O Interrupt:
• External event, asynchronous to instruction execution but 

does NOT prevent instruction completion
• Whenever an I/O device needs attention from the 

processor, it  interrupts the processor
• Some processors deals with interrupt as special 

exceptions

Slide: in part David Patterson

These schemes requires heavy processor’s involvement and 
suitable only for low bandwidth devices such as the keyboard



Polling: Programmed I/O

•  Advantage: 
–  Simple: the processor is totally in control and does all the 

work

•  Disadvantage:
–  Polling overhead can consume a lot of CPU time

CPU

IOC

device

Memory

Is the
data

ready?

read
data

store
data

yes no

done? no

yes

busy wait loop
not an efficient

way to use the CPU
unless the device

is very fast!

but checks for I/O 
completion can be
dispersed among

computation 
intensive code
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Interrupt Driven Data Transfer

•  Advantage:
–  User program progress is only halted during actual transfer

•  Disadvantage:  special hardware is needed to:
–  Cause an interrupt (I/O device)
–  Detect an interrupt (processor)
–  Save the proper states to resume after the interrupt (processor)

add
sub
and
or
nop

read
store
...
rti

memory

user
program(1) I/O

interrupt

(2) save PC

(3) interrupt
service addr

interrupt
service
routine(4)

CPU

IOC

device

Memory

:

* Slide is courtesy of Dave Patterson 



I/O Interrupt vs. Exception

• I/O interrupt is just like the exceptions except:
–  An I/O interrupt is asynchronous
–  Further information needs to be conveyed
–  Typically exceptions are more urgent than interrupts

• I/O interrupt is asynchronous:
–  I/O interrupt is not associated with any instruction
–  I/O interrupt does not prevent any instruction from completion

• You can pick your own convenient point to take an interrupt

•  I/O interrupt is more complicated than exception:
– Needs to convey the identity of the device generating the 

interrupt
– Interrupt requests can have different urgencies:

• Interrupt request needs to be prioritized
• Priority indicates urgency of dealing with the interrupt
• High speed devices usually receive highest priority

* Slide is courtesy of Dave Patterson 



Direct Memory Access

•  Direct Memory Access (DMA):
–  External to the CPU

–  Use idle bus cycles (cycle 
stealing)

–  Act as a master on the bus

–  Transfer blocks of data to or from  
memory without CPU intervention

–  Efficient for large data transfer, 
e.g. from disk

–  Cache usage allows the 
processor to leave enough 
memory bandwidth for DMA

CPU

IOC

device

Memory DMAC

CPU sends a starting address, 
direction,  and length count 
to DMAC.  Then issues "start".

DMAC provides handshake
signals for Peripheral
Controller, and Memory
Addresses and handshake
signals for Memory.

* Figure is courtesy of Dave Patterson 
For multiple bus system, each bus controller often contains DMA control logic



• CPU sets up and supply device id, 
memory address, number of bytes

• DMA controller (DMAC) starts the 
access and becomes bus master

• For multiple byte transfer, the DMAC 
increment the address

• DMAC interrupts the CPU upon 
completion

DMA Function



DMA Problems: VM

• Pages have different physical and virtual addresses
– Physical pages re-mapping to different virtual pages during 

DMA operations
– Multi-page DMA cannot assume consecutive addresses

• Solutions
– Allow virtual addressing based DMA

• Add translation logic to DMA controller
• OS allocated virtual pages to DMA prevent re-mapping 

until DMA completes
– Partitioned DMA

• Break DMA transfer into multi-DMA operations, each is 
single page

• OS chains the pages for the requester



DMA Problems: Cache

• Two copies of data items
– Processor might not know that the cache and memory pages 

are different
– Write-back caches can overwrite I/O data or makes DMA to 

read wrong data

• Solutions
– Route I/O activities through the cache 

• Not efficient since I/O data usually is not demonstrating 
temporal locality

– OS selectively invalidates cache blocks before I/O read or 
force write-back prior to I/O write
• Usually called cache flushing and requires hardware 

support



I/O Processor
CPU IOP
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D1

D2

Dn

.  .  .
main memory

bus

I/O
bus

CPU

IOP

(1) Issues
instruction
to IOP

memory

(2)

(3)

Device to/from memory
transfers are controlled
by the IOP directly.

IOP steals memory cycles.

OP   Device   Address

target device
where cmnds are

IOP looks in memory for commands

OP   Addr   Cnt   Other

what
to do

where
to put
data

how
much

special
requests

 (4) IOP interrupts
      CPU when done

* Slide is courtesy of Dave Patterson 

• An I/O processor (IOP) offload 
the CPU

• Motorola 860 includes IOP for 
serial communication



I/O Controller Architecture
Peripheral Bus (VME, FutureBus, etc.)

Host
Memory

Processor
Cache

Host
Processor

Peripheral Bus Interface/DMA

I/O Channel Interface

Buffer
Memory

ROM

µProc

I/O Controller

* Slide is courtesy of Dave Patterson 

• Request/response block interface
• Backdoor access to host memory



I/O System Performance

• I/O System performance depends on many aspects of 
the system (“limited by weakest link in the chain”):

–  The CPU
–  The memory system:

• Internal and external caches
• Main Memory

–  The underlying interconnection (buses)
–  The I/O controller
–  The I/O device
–  The speed of the I/O software (Operating System)
–  The efficiency of the software’s use of the I/O devices

• Two common performance metrics:
–  Throughput: I/O bandwidth
–  Response time: Latency

* Slide is courtesy of Dave Patterson 



Simple Producer-Server Model

•  Throughput:
–  The number of tasks completed by the server in unit time
–  In order to get the highest possible throughput:

• The server should never be idle
• The queue should never be empty

•  Response time:
–  Begins when a task is placed in the queue
–  Ends when it is completed by the server
–  In order to minimize the response time:

• The queue should be empty
• The server will be idle

* Slide is courtesy of Dave Patterson 
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Throughput versus Respond 
Time

20% 40% 60% 80% 100%

Response
Time (ms)

100

200

300

Percentage of maximum throughput

* Slide is courtesy of Dave Patterson 

Low response time is user-desirable but leads to low throughput 
that is system-Undesirable (low device utilization)



Throughput Enhancement

• In general throughput can be improved by throwing 
more hardware at the problem

• Response time is much harder to reduce:
– Average response time = average queuing time + average 

service time

• Estimating Queue Length:
– Utilization = U = Request Rate / Service Rate
– Mean Queue Length = U / (1 - U)
– Average queuing time = Mean Queue Length / request rate

* Slide is courtesy of Dave Patterson 
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Response Time vs. 
Productivity

• Interactive environments: assume each interaction 
(transaction) has 3 parts:

– Entry Time: time for user to enter command
– System Response Time: time between user entry & system 

replies
– Think Time: Time from response until user begins next 

command

0.7sec off response saves 4.9 sec 
(34%) and 2.0 sec (70%) total time per 
transaction => greater productivity

* Slide is courtesy of Dave Patterson 

Another study: everyone gets more 
done with faster response, but 
novice with fast response = expert 
with slow

An empirical study was conducted to capture the effect 
of response time on transaction time

Transaction 1
Transaction 2



I/O Benchmarks

• Processor benchmarks have aimed at response time 
for fixed sized problem

• I/O benchmarks typically measure throughput, possibly 
with upper limit on response times (or 90% of 
response times)

– Not much time in I/O
– Not considering main memory

Benchmark Size of Data % Time I/O Year

I/OStones 1 MB 26% 1990

Andrew 4.5 MB 4% 1988



• Automatically and dynamically increase 
aspects of workload to match 
characteristics of system measured 

• Suitable for wide range of current & 
future applications

• Self-scaling benchmarks include:
– Transaction Processing: TPC-A, TPC-B, 

TPC-C, TPC-D with different workload for 
type of application

– NFS: SPEC SFS offers a mix of read, read 
& other file-related operations

Self-Scaling Benchmark



• Hard drive: random access, magnetic 
based, various density and speed

• Tape: sequential access, huge storage 
capacity, cheap and replaceable

• Helical scan tapes: diagonal storage of 
bits to allow high speed tape rotation 
– (used also for VCR and camcorders)

• Flash DRAM: little slower than DRAM, 
expensive and limited in capacity

• Optical disk: high density, read-only

Well Known Storage



Storage Technology Drivers

• Driven by computing paradigm:
– 1950s: migration from batch to on-line 

processing

– 1990s: migration to ubiquitous computing

• Computers in phones, books, cars, video 
cameras, …

• Nationwide fiber optic network with wireless tails

• Effects on storage industry:
– Embedded storage: smaller, cheaper, more 

reliable, lower power

– Data utilities: high capacity, hierarchically 
managed storage

* Slide is partially Dave Patterson 



Magnetic Disk

•  Purpose:
– Long term, nonvolatile storage
– Large, inexpensive, and slow
– Low level in the memory hierarchy

•  Two major types:
– Floppy disk, Hard disk

•  Both types of disks:
– Rotating platter coated with a magnetic surface
– Use a moveable read/write head to access the disk

•  Advantages of hard disks over floppy disks:
– Platters are more rigid ( metal or glass) so they can be larger
– Higher density because it can be controlled more precisely
– Higher data rate because it spins faster
– Can incorporate more than one platter

R
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isk

* Slide is courtesy of Dave Patterson 



Organization of a Hard 
Magnetic Disk

• Typical numbers
– 500 to 2,000 tracks per surface
– 32 to 128 sectors per track

• A sector is the smallest unit that can be read or written to

• Traditionally all tracks have the same number of 
sectors:

– Constant bit density: record more sectors on the outer tracks
– Constant bit size, speed varies with track location

Platters

Track

Sector

* Slide is courtesy of Dave Patterson 



Magnetic Disk Operation

• Cylinder
– tracks under all heads

• Read/write in three-stages
– Seek time

• position the arm over proper cylinder

– Rotational latency
• wait for the sector to rotate under the head

– Transfer time

Cylinder

Sector
Track

Head Platter

* Slide is courtesy of Dave Patterson 



Magnetic Disk Characteristic

•  Seek time
– ∑(possible seek times)/(# possible seeks)
– Typical average 4–12 ms

• Locality may reduce by 25% to 33%

• Rotational Latency:
–  Most disks rotate at 3,600 to 7,200 RPM

•  = 16 ms to 8 ms per revolution

–  An average latency 1/2 way around disk
• 8 ms at 3600 RPM, 4 ms at 7200 RPM

* Slide is courtesy of Dave Patterson 



Magnetic Disk Characteristic

• Transfer Time is a function of :
– Transfer size (usually a sector): 1 KB / 

sector

– Rotation speed: 3600 RPM to 7200 RPM

– Recording density: bits per inch on a track

– Diameter: typical diameter ranges from  2.5 
to 5.25 in

• Typical values: 2  to 12 MB per second

* Slide is courtesy of Dave Patterson 



Example

* Slide is courtesy of Dave Patterson 

Calculate the access time for a disk with 512 byte/sector and 12 ms advertised seek 
time. The disk rotates at 5400 RPM and transfers data at a rate of 4MB/sec. The 
controller overhead is 1 ms. Assume that the queue is idle (so no service time)

Answer:

Disk Access Time  =  Seek time  +  Rotational Latency  + Transfer time
  + Controller Time  +  Queuing Delay

                                =  12 ms + 0.5 / 5400 RPM + 0.5 KB / 4 MB/s + 1 ms +  0

                                =  12  ms +  0.5 / 90 RPS  + 0.125 / 1024 s  + 1 ms

                                =  12 ms  +  5.5 ms            + 0.1 ms             + 1 ms

                                =  18.6 ms

 If real seeks are 1/3 the advertised seeks, disk access time would be
10.6 ms, with rotation delay contributing 50% of the access time!



Reliability and Availability

•  Reliability: Is anything broken?
– Reliability can only be improved by:

• Enhancing environmental conditions

• Building more reliable components

• Building with fewer components
– Improve availability may come at the  cost of lower 

reliability

•  Availability: Is the system still available 
to the user?
– Availability can be improved by adding 

hardware:
• Example: adding ECC on memory

* Slide: Dave Patterson 



Disk Arrays (RAID)

• Arrays of small and inexpensive disks
– Increase potential throughput by having many disk drives:

• Data is spread over multiple disk
• Multiple accesses are made to several disks

• Reliability is lower than a single disk:
–  Reliability of N disks = Reliability of 1 Disk ÷ N

 (50,000 Hours ÷ 70 disks = 700 hours) 
• Disk system MTTF: Drops from 6 years  to 1 month

–  Arrays (without redundancy) too unreliable to be useful!
–  But availability can be improved by adding redundant disks 

(RAID)

* Slide is partially courtesy of Dave Patterson 



Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its "shadow“
• Very high availability can be achieve
• Bandwidth sacrifice on write: Logical write = two 

physical writes
• Reads may be optimized
• Most expensive solution: 100% capacity overhead

Targeted for high I/O rate , high availability environments

recovery
group

* Slide is courtesy of Dave Patterson 



Parity Disk

P

10010011
11001101
10010011

. . .

logical record 1
0
0
1
0
0
1
1

1
1
0
0
1
1
0
1

1
0
0
1
0
0
1
1

0
0
1
1
0
0
0
0

Striped physical
records

Targeted for high bandwidth applications: Scientific, Image Processing
* Slide is courtesy of Dave Patterson 

• Parity computed across recovery group to protect against hard 
disk failures

• 33% capacity cost for parity in this configuration: wider arrays 
reduce capacity costs, decrease expected availability, increase 
reconstruction time

• Arms logically synchronized, spindles rotationally synchronized 
(logically a single high capacity, high transfer rate disk)



RAID 4 RAID 5

• Block-based party leads to more efficient read access compared 
to RAID 3

• Designating a party disk allows recovery but will keep it idle in the 
absence of a disk failure

• RAID 5 distribute the party block to allow the use of all disk and 
enhance parallelism of disk access

Block-Based Parity



RAID 5+: High I/O Rate Parity

A logical write
becomes four
physical I/Os

Independent writes
possible because of
interleaved parity

Reed-Solomon
Codes ("Q") for
protection during
reconstruction

D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Disk Columns

Increasing
Logical

Disk 
Addresses

Stripe

Stripe
Unit

Targeted for mixed
applications
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Problems of Small Writes

D0 D1 D2 D3 PD0'

+

+

D0' D1 D2 D3 P'

new
data

old
data

old 
parity

XOR

XOR

(1. Read) (2. Read)

(3. Write) (4. Write)

RAID-5: Small Write Algorithm

1 Logical Write = 2 Physical Reads + 2  Physical Writes

* Slide is courtesy of Dave Patterson 



Subsystem Organization

host array
controller

single board
disk 

controller

single board
disk 

controller

single board
disk 

controller

single board
disk 

controller

host
adapter

manages interface
to host, DMA

control, buffering,
parity logic

physical device
control

often piggy-backed
in small format devices

striping software off-loaded from 
host to array controller

no applications modifications

no reduction of host performance
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Orthogonal RAIDs
Array

Controller
String

Controller

String
Controller

String
Controller

String
Controller

String
Controller

String
Controller

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

• Data Recovery Group: unit of data redundancy

• Redundant Support Components: fans, power supplies, controller, cables

• End to End Data Integrity: internal parity protected data paths
* Slide is courtesy of Dave Patterson 



System-Level Availability

Fully dual redundantI/O Controller I/O Controller

Array Controller Array Controller

. . .

. . .

. . .

. . . . . .

.

.

.
Recovery
Group

Goal: No Single
Points of
Failure

host host

with duplicated paths, higher performance can be
obtained when there are no failures

* Slide is courtesy of Dave Patterson 


