
IntroductionIntroduction

CMSC 611: Advanced ComputerCMSC 611: Advanced Computer
ArchitectureArchitecture

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides
Some material adapted from David Culler, UC Berkeley CS252, Spr 2002 course slides, © 2002 UC Berkeley
Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

OverviewOverview

• Resources, syllabus, work load
• Grade structure and policy
• Expected background
• An introduction to computer architecture
• Why study computer architecture?
• Organization and anatomy of computers
• Impact of microelectronics technology on

computers
• The evolution of the computer industry

and generations

Course ResourcesCourse Resources

• Instructor: Marc Olano / ITE 354
– Office Hours: Tue Thu 2:45 – 3:45

• TA: Yifang Liu / ITE 340
– Office Hours: Wed 4:00 – 6:00

• Web Page:
– www.cs.umbc.edu/~olano/611

• Book
– Hennessy and Patterson, Computer

Architecture: A Quantitative Approach, 3rd
Edition

SyllabusSyllabus

• Quantitative Design Principles

• Instruction Set Principles

• Pipelining and Instruction Parallelism

• Memory Hierarchy Design

• Storage and I/O

• Multiprocessor Systems

• Interconnection Networks

WorkloadWorkload

• Assignments
– Approximately 2 hours, every other week

– Mostly from book

• Exams
– Midterm in class, Thursday October 16th

– Final December 11th, 3:30 – 5:30

• Project

ProjectProject

• Teams of two

• You choose application area

• Design architecture for your application

• Final written report / architecture manual

GradesGrades

• Breakdown
– 20% Homework

– 25% Midterm

– 25% Final

– 30% Project

• Homework late policy
– Up to 1-week late, -20% of total points

– One penalty-free late, requested in advance

– >1 week late scores zero

Expected BackgroundExpected Background

• CMSC 411: Computer Architecture
– Design of computer systems

• Information representation

• Floating point arithmetic

• Hardwired & micro programmed control

• Pipelining

• Cache

• Bus control & timing

• I/O mechanisms

• Parallel processing

• 411 focus on design and implementation (how)

• We focus on design decisions (why)

Introduction & MotivationIntroduction & Motivation

• Computer systems are responsible of 5-10%
of the gross national product of the US

• WWW, ATM, DNA mapping, … are among the
applications that were economically infeasible
suddenly became practical

• You can be a part of this!
• Even if you don’t want to do computer

architecture, this class will
– Help you understand the limits & capabilities of

computing
– Help you understand why
– Tools of computer architecture apply everywhere!

Slide: David Culler, UCB

Recent DevelopmentsRecent Developments

• Manipulating the instruction set abstraction
– itanium: translate ISA64 -> micro-op sequences

– transmeta: continuous dynamic translation of IA32

– tinsilica: synthesize the ISA from the application

– reconfigurable HW

• Virtualization
– vmware: emulate full virtual machine

– JIT: compile to abstract virtual machine,
dynamically compile to host

More Recent DevelopmentsMore Recent Developments

• Parallelism
– wide issue, dynamic instruction scheduling,

EPIC

– multithreading (SMT)

– chip multiprocessors

• Communication
– network processors, network interfaces

• Exotic explorations
– nanotechnology, quantum computing

What is What is ““ComputerComputer

ArchitectureArchitecture””??
• Instruction set architecture

– functional behavior of a computer system as viewed
by a programmer (like the size of a data type – 32
bits to an integer).

• Computer organization
– Structural relationships that are not visible to the

programmer (like clock frequency or the size of the
physical memory).

• The Von Neumann model is the most famous
and common computer organization
– Not the only (e.g. Harvard Architecture)

• Hardware Components

• Logic Designer’s View

• “Construction Engineer”

Computer Architecture

Instruction Set Architecture Machine Organization

• Interfaces

• Compiler/System View

• “Building Architect”

What is What is ““ComputerComputer

ArchitectureArchitecture””??

 Slide: David Patterson, UCB

The instruction set architecture distinguishes the semantics
of the architecture from its detailed hardware implementation
The instruction set architecture distinguishes the semantics
of the architecture from its detailed hardware implementation

Instruction Set ArchitectureInstruction Set Architecture

... the attributes of a
[computing] system as
seen by the programmer,
i.e. the conceptual
structure and functional
behavior, as distinct from
the organization of the
data flows and controls the
logic design, and the
physical implementation.
– Amdahl, Blaaw, and
Brooks, 1964

• Organization of
Programmable Storage

• Data Types & Data
Structures: Encoding &
Representation

• Instruction Set

• Instruction Formats

• Modes of Addressing and
Accessing Data Items and
Instructions

• Exceptional Conditions

instruction set

software

hardware

The instruction set can be viewed as an abstraction of the
HW that hides the details and the complexity of the HW
The instruction set can be viewed as an abstraction of the
HW that hides the details and the complexity of the HW

The Instruction Set: a CriticalThe Instruction Set: a Critical

InterfaceInterface
DEC Alpha (v1, v3) 1992-1997
HP PA-RISC (v1.1, v2.0) 1986-1996
Sun Sparc (v8, v9) 1987-1995
MIPS (MIPS I, II, III, IV, V) 1986-1996
Intel (8086,80286,80386, 80486,Pentium, MMX, ...) 1978-2000

 Figure: David Patterson, UCB

R0 - R31

PC
HI

LO

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

Registers

MIPS R3000 ISA (Summary)MIPS R3000 ISA (Summary)

• Instruction Categories
– Load/Store

– Computational

– Jump and Branch

– Floating Point
• coprocessor

– Memory Management

– Special

 Slide: David Patterson, UCB

Logic Designer's View

ISA Level

Functional Units
& Interconnect

Machine OrganizationMachine Organization

• Capabilities & performance
characteristics of principal
functional units (e.g., Registers,
ALU, Shifters, Logic Units, ...)

• Ways in which these
components are interconnected

• Information flows between
components

• Logic and means by which such
information flow is controlled

• Choreography of functional units
to realize the instruction set
architecture

• Register Transfer Level
Description

 Slide: David Patterson, UCB

Floating-point Unit

Integer Unit

Inst
Cache

Ref
MMU

Data
Cache

Store
Buffer

Bus Interface

SuperSPARC

L2
$

CC

MBus Module

MBus

L64852 MBus control
M-S Adapter

SBus

DRAM
Controller

SBus
DMA

SCSI

Ethernet

STDIO

serial
kbd
mouse
audio
RTC
Boot PROM
Floppy

SBus
Cards

Example OrganizationExample Organization

• TI SuperSPARCtm TMS390Z50 in Sun SPARCstation20

 Slide: David Patterson, UCB

 Processor

Computer

Control

Datapath

Memory Devices

Input

Output

e.g., Keyboard,
mouse, disk

e.g. Printer,
Monitor, disk

Connections for
Information flow

Coordination for
proper operation

General Comp OrganizationGeneral Comp Organization

• Every piece of every computer, past and present:
input, output, memory, datapath and control

• The design approach is constrained by the cost and
size and capabilities required from every component

• An example design target can be 25% of cost on
Processor, 25% of cost on minimum memory size, rest
on I/O devices, power supplies, and chassis

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

°
°

ALUOP[0:3] <= InstReg[9:11] & MASK

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signal
 Specification

Compiler

Assembler

Machine Interpretation

Levels of BehaviorLevels of Behavior

RepresentationRepresentation

 Slide: David Patterson, UCB

Levels of AbstractionLevels of Abstraction

• S/W and H/W consists of hierarchical layers of abstraction,
each hides details of lower layers from the above layer

• The instruction set arch. abstracts the H/W and S/W
interface and allows many implementation of varying cost
and performance to run the same S/W

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

Layout
 Figure: David Patterson, UCB

Computer
Architecture

Technology Programming
Languages

Operating
Systems

History

Applications

Forces on ComputerForces on Computer

ArchitectureArchitecture
• Programming languages might encourage architecture

features to improve performance and code size, e.g. Fortran
and Java

• Operating systems rely on the hardware to support essential
features such as semaphores and memory management

• Technology always raises the bar for what could be done and
changes design’s focus

• Applications usually derive capabilities and constrains
• History provides the starting point, filters out mistakes

 Figure: David Patterson, UCB

Higher logic density gave room for instruction pipeline & cacheHigher logic density gave room for instruction pipeline & cache

Performance optimization no longer implies smaller programsPerformance optimization no longer implies smaller programs

Computers became lighter and more power efficientComputers became lighter and more power efficient

Technology Technology –– dramatic change dramatic change

• Processor

– logic capacity: about 30% increase per year

– clock rate: about 20% increase per year

• Memory

– DRAM capacity: about 60% increase per year
(4x / 3 years)

– Memory speed: about 10% increase per year

– Cost per bit: about 25% improvement per year

• Disk

– Capacity: about 60% increase per year

i4004

i8086

i80386

Pentium

i80486

i80286

SU MIPS

R3010

R4400

R10000

1000

10000

100000

1000000

10000000

100000000

1965 1970 1975 1980 1985 1990 1995 2000 2005

Tr
an

sis
to

rs

i80x86
M68K
MIPS
Alpha

In ~1985 the single-chip processor and the single-board computer emerged
In the 2004+ timeframe, today’s mainframes may be a single-chip computer

CMOS improvements:
• Die size: 2X every 3 yrs

• Line width: halve / 7 yrs

ÿ Alpha 21264: 15 million

ÿ Pentium Pro: 5.5 million

ÿ PowerPC 620: 6.9 million

ÿ Alpha 21164: 9.3 million

ÿ SPARC Ultra: 5.2 million

Technology ImpactTechnology Impact

 Figure: David Patterson, UCB

0

50

100

150

200

250

300

350

1982 1984 1986 1988 1990 1992 1994

Year

Pe
rf

or
m

an
ce

RISC

Intel x86

35%/yr

RISC
introduction

Performance now improves ~ 50% per year (2x every 1.5 years)Performance now improves ~ 50% per year (2x every 1.5 years)

 Alpha 21264 exceeds 1200

Processor Performance (SPEC)Processor Performance (SPEC)

 Slide: David Patterson, UCB

R
el

at
iv

e
P

er
fo

rm
an

ce

Technology

Architecture
+

Technology

Relying on technology alone would have kept us 8 years behind

Processor Performance (SPEC)Processor Performance (SPEC)

One Architectural FactorOne Architectural Factor

uuuuuuu

uu

u

uu

u
u

u uu
u

u

u

u

uu

uuu u

u
u

u

u

u u

u

u

u

u

u

uu

u u

uu
u
uuu u

uu uu u

u

uuu u

uuu

u
u uuu

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Bit-level parallelism Instruction-level Thread-level (?)

i4004

i8008
i8080

i8086

i80286

i80386

R2000

Pentium

R10000

R3000

T
ra

ns
is

to
rs

 Figure: David Culler, UCB

1992

100,000

10,000

1000

100

10
19901988198619841982198019781976

Year of introduction

16M

4M

1M

256K

16K

64K

1994 1996

64M Year Size(Mb) Cyc time

1980 0.0625 250 ns

1983 0.25 220 ns

1986 1 190 ns

1989 4 165 ns

1992 16 145 ns

1996 64 120 ns

2000 256 100 ns

Technology Impact on DesignTechnology Impact on Design

• DRAM capacity 4x / 3 yrs; 16,000x in 20 yrs!

• Programming concern: cache not RAM size

• Processor organization becoming main focus for performance
optimization

• HW designer focus not only performance but functional
integration and power consumption (e.g. system on a chip)

Technology
Trends

Evaluate ExistingEvaluate Existing
Systems for Systems for
BottlenecksBottlenecks

Benchmarks

Simulate NewSimulate New
Designs andDesigns and

OrganizationsOrganizations

Workloads

Implement NextImplement Next
Generation SystemGeneration System

Implementation
Complexity

Computer EngineeringComputer Engineering

MethodologyMethodology

 Slide: David Patterson, UCB

Personal computers and
workstations

LSI and VLSI1978- ?4

MinicomputerIntegrated circuits1969-19773

Cheaper computersTransistor1960-19682

Commercial electronic computerVacuum tube1950-19591

Principal new productTechnologyDatesGen

Computer GenerationsComputer Generations

• Computers were classified into 4 generations based on
revolutions in the technology used in the development

• By convention, commercial electronic computers are take to be
the first generation rather than the electromechanical machines
that preceded them

• Today computer generations are not commonly referred to due to
the long standing of the VLSI technology and the lack of
revolutionary technology in sight

Historical Perspective

After adjusting for inflation, price/performance has improved
by about 240 million in 45 years (about 54% per year)
After adjusting for inflation, price/performance has improved
by about 240 million in 45 years (about 54% per year)

239,078,908$4.4K47,846,890$4.4K16,384400M5002Intel PPro PC
200 Mhz

1996

16,122,356$8K3,556,188$7.4K16,38450M5002HP 9000/
model 750

1991
154,673$4K42,105$3K256240K1501IBM PC1981
15,604$8.5M21,842$4M32,768166M60K58Cray-11976
13,135$66K10,855$16K4330K5008PDP-81965

318$4.1M263$1M64500K10K60IBM S/360
model 50

1964
1$5M1$1M481.9K124K1000UNIVAC 11951

Adjusted
price/perform
vs. UNIVAC

Adjusted
price
1996

Price/
Perform. vs.
UNIVAC

PriceMem.
(KB)

Perform.
(add/sec)

Power
(Watt)

Size
(Ft.3)

NameYear

Computer architecture is at the core of computer science & Eng.Computer architecture is at the core of computer science & Eng.

ConclusionConclusion

• So what's in it for you?

– In-depth understanding of the inner-workings of modern
computers, their evolution, and trade-offs present at the
hardware/software boundary.

– Experience with the design process in the context of a
reasonable size hardware design

• Why should a programmer care?

– In the 60’s and 70’s performance was constrained by
the size of memory, not an issue today

– Performance optimization needs knowledge of memory
hierarchy, instruction pipeline, parallel processing, etc.

– Systems’ programming is highly coupled with the
computer organization, e.g. embedded systems

