
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

Instruction Level ParallelismInstruction Level Parallelism

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides
Some material adapted from Hennessy & Patterson / © 2003 Elsevier Science

Floating-Point PipelineFloating-Point Pipeline

• Impractical for FP
ops to complete in
one clock
– (complex logic and/or

very long clock cycle)

• More complex
hazards
– Structural

– Data

Non-pipelined DIV
operation stalling
the whole pipeline
for 24 cycles

Pipelined FP addition
with latency of 3 cycles

Integer ALU7-stage pipelined FP
multiply

Multi-cycle FP PipelineMulti-cycle FP Pipeline

Example: blue indicate where data is needed and red when result is available

MULTD IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB
ADDD IF ID A1 A2 A3 A4 MEM WB
LD IF ID EX MEM WB
SD IF ID EX MEM WB

Multi-cycle FP: EX PhaseMulti-cycle FP: EX Phase

• Latency: cycles between instruction that produces
result and instruction that uses it
– Since most operations consume their operands at the

beginning of the EX stage, latency is usually number of the
stages of the EX an instruction uses

• Long latency increases the frequency of RAW hazards
• Initiation (Repeat) interval: cycles between issuing two

operations of a given type

Functional unit Latency Initiation interval

Integer ALU 0 1

Data memory (integer and FP loads) 1 1

FP add 3 1

FP multiply (also integer multiply) 6 1

FP divide (also integer divide) 24 25

Example of RAW hazard caused by the long latency

FP Pipeline ChallengesFP Pipeline Challenges

• Non-pipelined divide causes structural hazards
• Number of register writes required in a cycle can be larger than 1
• WAW hazards are possible

– Instructions no longer reach WB in order

• WAR hazards are NOT possible
– Register reads are still taking place during the ID stage

• Instructions can complete out of order
– Complicates exceptions

• Longer latency makes RAW stalls more frequent

Clock cycle number
Instruction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LD F4, 0(R2) IF ID EX MEM WB

MULTD F0, F4, F6 IF ID stall M1 M2 M3 M4 M5 M6 M7 MEM WB

ADDD F2, F0, F8 IF stall ID stall stall stall stall stall stall A1 A2 A3 A4 MEM

SD 0(R2), F2 IF stall stall stall stall stall stall ID EX stall stall stall MEM

WB Structural HazardWB Structural Hazard

Clock cycle number Instruction
1 2 3 4 5 6 7 8 9 10 11

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

… IF ID EX MEM WB

… IF ID EX MEM WB

ADDD F2, F4, F6 IF ID A1 A2 A3 A4 MEM WB

… IF ID EX MEM WB

… IF ID EX MEM WB

LD F2, 0(R2) IF ID EX MEM WB

• At cycle 11, the MULTD, ADDD and LD instructions
will try to write back
– structural hazard if there is only one write port

• Additional write ports are not cost effective since they
are rarely used

• Instead
– Detect at ID and stall
– Detect at MEM or WB and stall

WAW Data HazardsWAW Data Hazards

Clock cycle number Instruction
1 2 3 4 5 6 7 8 9 10 11

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

… IF ID EX MEM WB

… IF ID EX MEM WB

ADDD F2, F4, F6 IF ID A1 A2 A3 A4 MEM WB

… IF ID EX MEM WB

LD F2, 0(R2) IF ID EX MEM WB

…. IF ID EX MEM WB

• WAW hazards can be corrected by either:
– Stalling the latter instruction at MEM until it is safe
– Preventing the first instruction from overwriting the register

• Correcting at cycle 11 OK unless intervening RAW/use of F2
• WAW hazards can be detected at the ID stage

– Convert 1st instruction to no-op

• WAW hazards are generally very rare, designers usually go with
the simplest solution

Detecting HazardsDetecting Hazards

• Hazards among FP instructions & and combined FP
and integer instructions

• Separate int & fp register files limits latter to FP load
and store instructions

• Assuming all checks are to be performed in the ID
phase:
– Check for structural hazards:

• Wait if the functional unit is busy (Divides in our case)
• Make sure the register write port is available when needed

– Check for a RAW data hazard
• Requires knowledge of latency and initiation interval to decide

when to forward and when to stall

– Check for a WAW data hazard
• Write completion has to be estimated at the ID stage to check

with other instructions in the pipeline

• Data hazard detection and forwarding logic from
values stored between the stages

Maintaining PreciseMaintaining Precise

ExceptionsExceptions
• Pipelining FP instructions can cause out-

of-order completion

• Exceptions also a problem:
DIVF F0, F2, F4

ADDF F10, F10, F8

SUBF F12, F12, F14

– No data hazards

– What if DIVF exception occurs after ADDF
writes F10?

Four FP Exception SolutionsFour FP Exception Solutions

1. Settle for imprecise exceptions
– Some supercomputers still uses this approach

– IEEE floating point standard requires precise
exceptions

– Some machine offer slow precise and fast
imprecise exceptions

2. Buffer the results of all operations until
previous instructions complete
– Complex and expensive design (many

comparators and large MUX)

– History or future register file

Four FP Exception SolutionsFour FP Exception Solutions

3. Allow imprecise exceptions and get the
handler to clean up any miss
– Save PC + state about the interrupting instruction

and all out-of-order completed instructions
– The trap handler will consider the state

modification caused by finished instructions and
prepare machine to resume correctly

– Issues: consider the following example
Instruction1: Long running, eventual exception
Instructions 2 … (n-1) : Instructions that do not complete
Instruction n : An instruction that is finished

– The compiler can simplify the problem by grouping
FP instructions so that the trap does not have to
worry about unrelated instructions

Four FP Exception SolutionsFour FP Exception Solutions

4. Allow instruction issue to continue only if
previous instruction are guaranteed to cause
no exceptions:

– Mainly applied in the execution phase
– Used on MIPS R4000 and Intel Pentium

Stalls/Instruction, FP PipelineStalls/Instruction, FP Pipeline

More FP Pipeline PerformanceMore FP Pipeline Performance

This figure (A.36 in the book) contains several errors in either graph
or data. Only take-home: result stalls are most common by far

Instruction Level ParallelismInstruction Level Parallelism

(ILP)(ILP)
• Overlap the execution of unrelated

instructions
• Both instruction pipelining and ILP

enhance instruction throughput not the
execution time of the individual
instruction

• Potential of IPL within a basic block is
very limited
– in “gcc” 17% of instructions are control

transfer meaning on average 5 instructions
per branch

Loops: Simple & CommonLoops: Simple & Common

for (i=1; i<=1000; i=i+1)
 x[i] = x[i] + y[i];

• Techniques like loop unrolling convert loop-
level parallelism into instruction-level
parallelism
– statically by the compiler
– dynamically by hardware

• Loop-level parallelism can also be exploited
using vector processing

• IPL feasibility is mainly hindered by data and
control dependence among the basic blocks

• Level of parallelism is limited by instruction
latencies

Major AssumptionsMajor Assumptions

• Basic MIPS integer pipeline

• Branches with one delay cycle

• Functional units are fully pipelined or replicated (as
many times as the pipeline depth)
– An operation of any type can be issued on every clock cycle

and there are no structural hazard

Instruction producing
result

Instruction using
results

Latency in
clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store Double 2

Load Double FP ALU op 1

Load Double Store Double 0

Code

Source
Scanner Parser

Static
Semantics
Analyzer

Code
generator

Optimizer

Call graphControl flow
graph

Data dependence
representation

M/C code

Condition

Start

Call
subroutine

Basic Block

Basic Block

Basic Block

Basic Block

Basic Block

End

Condition

Call
subroutine

X1: A = B

new def. for A

X2: A = C

new def. for AZ = A

A use X1

Y = A + 3

A use X1 or X2

A

G

F

E

D

B

C

Compilation OverviewCompilation Overview

Motivating ExampleMotivating Example
Loop: LD F0,x(R1) ;F0=vector element

 ADDD F4,F0,F2 ;add scalar from F2

 SD x(R1),F4 ;store result

 SUBI R1,R1,8 ;decrement pointer (DW)

 BNEZ R1,Loop ;branch R1!=zero

for (i=1000; i>0; i=i-1)

 x[i] = x[i] + s;

for (i=1000; i>0; i=i-1)

 x[i] = x[i] + s;

Loop: LD F0,x(R1)

 stall

 ADDD F4,F0,F2

 stall

 stall

 SD x(R1),F4

 SUBI R1,R1,8

 stall

 BNEZ R1,Loop

 stall

Loop: LD F0,x(R1)

 stall

 ADDD F4,F0,F2

 stall

 stall

 SD x(R1),F4

 SUBI R1,R1,8

 stall

 BNEZ R1,Loop

 stall

Standard Pipeline
execution

Loop: LD F0,x(R1)

 SUBI R1,R1,8

 ADDD F4,F0,F2

 stall ;F4 latency

 BNEZ R1,Loop

 SD x+8(R1),F4

Loop: LD F0,x(R1)

 SUBI R1,R1,8

 ADDD F4,F0,F2

 stall ;F4 latency

 BNEZ R1,Loop

 SD x+8(R1),F4

Smart compiler

Sophisticated compiler optimization reduced
execution time from 10 cycles to only 6 cycles

Loop: LD F0,x(R1)
ADDD F4,F0,F2
SD x(R1),F4 ;drop SUBI & BNEZ
LD F6,x-8(R1)
ADDD F8,F6,F2
SD x-8(R1),F8 ;drop again
LD F10,x-16(R1)
ADDD F12,F10,F2
SD x-16(R1),F12 ;drop again
LD F14,x-24(R1)
ADDD F16,F14,F2
SD x-24(R1),F16
SUBI R1,R1,#32 ;alter to 4*8
BNEZ R1,LOOP

Loop: LD F0,x(R1)
ADDD F4,F0,F2
SD x(R1),F4 ;drop SUBI & BNEZ
LD F6,x-8(R1)
ADDD F8,F6,F2
SD x-8(R1),F8 ;drop again
LD F10,x-16(R1)
ADDD F12,F10,F2
SD x-16(R1),F12 ;drop again
LD F14,x-24(R1)
ADDD F16,F14,F2
SD x-24(R1),F16
SUBI R1,R1,#32 ;alter to 4*8
BNEZ R1,LOOP

Loop: LD F0,x(R1)
 ADDD F4,F0,F2
 SD x(R1),F4
 SUBI R1,R1,8

 BNEZ R1,Loop

Replicate loop body 4 times, will need cleanup

phase if loop iteration is not a multiple of 4

Loop UnrollingLoop Unrolling

• 6 cycles, but only 3 are
loop body

• Loop unrolling limits
overhead at the expense
of a larger code
– Eliminates branch delays

– Enable effective
scheduling

• Use of different registers
needed to limit data
hazard

Scheduling Unrolled LoopsScheduling Unrolled Loops
Cycle Instruction

1 Loop: LD F0,x(R1)
3 ADDD F4,F0,F2
6 SD x(R1),F4
7 LD F6,x-8(R1)
9 ADDD F8,F6,F2
12 SD x-8(R1),F8
13 LD F10,x-16(R1)
15 ADDD F12,F10,F2
18 SD x-16(R1),F12
19 LD F14,x-24(R1)
21 ADDD F16,F14,F2
24 SD x-24(R1),F16
25 SUBI R1,R1,#32
27 BNEZ R1,LOOP
28 stall

Cycle Instruction

1 Loop: LD F0,x(R1)
3 ADDD F4,F0,F2
6 SD x(R1),F4
7 LD F6,x-8(R1)
9 ADDD F8,F6,F2
12 SD x-8(R1),F8
13 LD F10,x-16(R1)
15 ADDD F12,F10,F2
18 SD x-16(R1),F12
19 LD F14,x-24(R1)
21 ADDD F16,F14,F2
24 SD x-24(R1),F16
25 SUBI R1,R1,#32
27 BNEZ R1,LOOP
28 stall

Cycle Instruction

1 Loop: LD F0,x(R1)
2 LD F6,x-8(R1)
3 LD F10,x-16(R1)
4 LD F14,x-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F
9 SD x(R1),F4
10 SD x-8(R1),F8
11 SUBI R1,R1,#32
12 SD x-16(R1),F12
13 BNEZ R1,LOOP
14 SD x+8(R1),F1

Cycle Instruction

1 Loop: LD F0,x(R1)
2 LD F6,x-8(R1)
3 LD F10,x-16(R1)
4 LD F14,x-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F
9 SD x(R1),F4
10 SD x-8(R1),F8
11 SUBI R1,R1,#32
12 SD x-16(R1),F12
13 BNEZ R1,LOOP
14 SD x+8(R1),F1

Loop unrolling
exposes more
computation that
can be scheduled
to minimize the
pipeline stalls

Understanding
dependence
among
instructions is the
key for for
detecting and
performing the
transformation

Inter-instruction DependenceInter-instruction Dependence

• Determining how one instruction
depends on another is critical not only to
the scheduling process but also to
determining how much parallelism exists

• If two instructions are parallel they can
execute simultaneously in the pipeline
without causing stalls (assuming there is
not structural hazard)

• Two instructions that are dependent are
not parallel and their execution cannot
be reordered

Dependence ClassificationsDependence Classifications

• Data dependence (RAW)
– Transitive: i ’ j ’ k = i ’ k
– Easy to determine for registers, hard for memory

• Does 100(R4) = 20(R6)?
• From different loop iterations, does 20(R6) = 20(R6)?

• Name dependence (register/memory reuse)
– Anti-dependence (WAR): Instruction j writes a

register or memory location that instruction i reads
from and instruction i is executed first

– Output dependence (WAW): Instructions i and j
write the same register or memory location;
instruction ordering must be preserved

• Control dependence, caused by conditional
branching

Example: Name DependenceExample: Name Dependence
Loop: LD F0,x(R1)

 ADDD F4,F0,F2
 SD x(R1),F4
 LD F0,x-8(R1)
 ADDD F4,F0,F2
 SD x-8(R1),F4
 LD F0,x-16(R1)
 ADDD F4,F0,F2
 SD x-16(R1),F4
 LD F0,x-24(R1)
 ADDD F4,F0,F2
 SD x-24(R1),F4
 SUBI R1,R1,#32

 BNEZ R1,Loop

Loop: LD F0,x(R1)
 ADDD F4,F0,F2
 SD x(R1),F4
 LD F0,x-8(R1)
 ADDD F4,F0,F2
 SD x-8(R1),F4
 LD F0,x-16(R1)
 ADDD F4,F0,F2
 SD x-16(R1),F4
 LD F0,x-24(R1)
 ADDD F4,F0,F2
 SD x-24(R1),F4
 SUBI R1,R1,#32

 BNEZ R1,Loop

Loop: LD F0,x(R1)
ADDD F4,F0,F2
SD x(R1),F4
LD F6,x-8(R1)
ADDD F8,F6,F2
SD x-8(R1),F8
LD F10,x-16(R1)
ADDD F12,F10,F2
SD x-16(R1),F12
LD F14,x-24(R1)
ADDD F16,F14,F2
SD x-24(R1),F16
SUBI R1,R1,#32
BNEZ R1,LOOP

Loop: LD F0,x(R1)
ADDD F4,F0,F2
SD x(R1),F4
LD F6,x-8(R1)
ADDD F8,F6,F2
SD x-8(R1),F8
LD F10,x-16(R1)
ADDD F12,F10,F2
SD x-16(R1),F12
LD F14,x-24(R1)
ADDD F16,F14,F2
SD x-24(R1),F16
SUBI R1,R1,#32
BNEZ R1,LOOP

Register
renaming

• Again Name Dependencies are Hard for Memory Accesses
– Does 100(R4) = 20(R6)?
– From different loop iterations, does 20(R6) = 20(R6)?

• Compiler needs to know that R1 does not change ’ 0(R1)≠ -8(R1)≠ -16(R1)≠ -24(R1)
and thus no dependencies between some loads and stores so they could be moved

Control DependenceControl Dependence

• Control flow of a program is
enforced by conditional
branching

• Two constraints on control
dependences:
– An instruction control

dependent on a branch
cannot be moved before
the branch

– An instruction not control
dependent on a branch
cannot be moved after the
branch

• Observing control
dependence is not a must
– But preserve program

correctness in exception
behavior and data flow

Condition

Call
subroutine

X1: A = B

new def. for A

X2: A = C

new def. for AZ = A

A use X1

Y = A + 3

A use X1 or X2

Preserving CorrectnessPreserving Correctness

• Preserving exception behavior means
that any changes in the ordering of
instruction execution must not change
how exceptions are raised

BEQZ R2, L1 LW R1, 0(R2)
LW R1, 0(R2) BEQZ R2, L1

– LW may cause memory protection
exception

• Data flow reflects changes to variables
(registers and memory) throughout the
program

Loop-level ParallelismLoop-level Parallelism

• Loop-level parallelism is normally
analyzed at the source code level or
close to it while most analysis of IPL
after code generation

• Loop level analysis involves determining
what dependences exist among the
operands in the loop across iterations of
the loop (bulk is data dependence)
 for (i=1000; i>0; i=i-1) all dependence are within same

 x[i] = x[i] + s; iteration and thus loop is parallel

Loop-level ParallelismLoop-level Parallelism

• Loop-carried dependence is caused by data
dependence between operands modified in
consecutive iterations

 Example: Assuming A,B,C are distinct and non-overlapping
for (i=1; i<=100; i=i+1) {
 A[i+1] = A[i] + C[i]; /* S1 */
 B[i+1] = B[i] + A[i+1];} /* S2 */

– S2 uses the value, A[i+1], computed by S1 in the
same iteration

– S1 uses a value computed by S1 in an earlier
iteration

• Loop-carried dependence can be efficiently
handled by loop unrolling

Branching Branching DilemaDilema

• With the increased pipeline throughput, control
dependence rapidly becomes the limiting
factor to the amount of ILP

• For pipelines that issue n-instructions per clock
cycle, the negative impact of stalls caused by
control hazards magnifies

• Compiler-based techniques rely on static
program properties to handle control hazards

• Hardware-based techniques refer to the
dynamic behavior of the program to predict the
outcome of a branch

Branch Target CacheBranch Target Cache

• Predict not-taken: still stalls to wait for
branch target computation

• If address could be guessed, the branch
penalty becomes zero

• Cache predicted address based on
branch address

• Complications for complex predictors: do
we know in time?

Branch Target CacheBranch Target Cache

Handling Branch Target CacheHandling Branch Target Cache

• No branch delay if the a
branch prediction entry
is found and is correct

• A penalty of two cycle is
imposed for a wrong
prediction or a cache
miss

• Cache update on
misprediction and
misses can extend the
time penalty

• Dealing with misses or
misprediction is
expensive and should
be optimized

M
is

p
re

d
ic

ti
o

n
 r

at
e

Return Address CacheReturn Address Cache

• Branch target caching can be applied to expedite
unconditional jumps (branch folding) and returns for
procedure calls

• For calls from multiple sites, not clustered in time, a stack
implementation of the branch target cache can be useful

Basic Branch PredictionBasic Branch Prediction

• Simplest dynamic branch-prediction scheme
– use a branch history table to track when the branch

was taken and not taken

– Branch history table is a small 1-bit buffer indexed
by lower bits of PC address with the bit is set to
reflect the whether or not branch taken last time

• Performance = ƒ(accuracy, cost of misprediction)

• Problem: in a loop, 1-bit branch history table
will cause two mispredictions:
– End of loop case, when it exits instead of looping

– First time through loop on next time through code,
when it predicts exit instead of looping

2-bit Branch History Table2-bit Branch History Table

• A two-bit buffer better captures the history of
the branch instruction

• A prediction must miss twice to change

N-bit PredictorsN-bit Predictors

• 2-bit is a special case of n-bit counter
– For every entry in the prediction buffer

– Increment/decrement if branch taken/not

– If the counter value is one half of the
maximum value (2n-1), predict taken

• Slow to change prediction, but can
change

S
P

E
C

89
 b

en
ch

m
ar

ks

• Prediction accuracy of a 4096-entry
prediction buffer ranges from 82% to
99% for the SPEC89 benchmarks

• The performance impact depends on
frequency of branching instructions
and the penalty of misprediction

Performance of 2-bit BranchPerformance of 2-bit Branch
BufferBuffer

S
P

E
C

89
 b

en
ch

m
ar

ks

n 4096 entries (2 bits/entry) n Unlimited entries (2 bits/entry)

• Buffer size has little impact
beyond a certain size

• Misprediction is because either:

–Wrong guess for that branch

–Got branch history of wrong
branch when index the table

Optimal Size for 2-bit BranchOptimal Size for 2-bit Branch

BuffersBuffers

If (aa == 2)

aa = 0;

If (bb == 2)

bb = 0;

If (aa != bb) {

If (aa == 2)

aa = 0;

If (bb == 2)

bb = 0;

If (aa != bb) {

DSUBUI R3, R1, #2
BNEZ R3, L1 ; branch b1 (aa!=2)
ANDI R1, R1, #0 ; aa=0

L1: SUBUI R3, R2, #2
BNEZ R3, L2 ; branch b2 (bb!=2)
ANDI R2, R2, #0 ; bb=0

L2: SUBU R3, R1, R2 ; R3=aa-bb
BEQZ R3, L3 ; branch b3 (aa==bb)

DSUBUI R3, R1, #2
BNEZ R3, L1 ; branch b1 (aa!=2)
ANDI R1, R1, #0 ; aa=0

L1: SUBUI R3, R2, #2
BNEZ R3, L2 ; branch b2 (bb!=2)
ANDI R2, R2, #0 ; bb=0

L2: SUBU R3, R1, R2 ; R3=aa-bb
BEQZ R3, L3 ; branch b3 (aa==bb)

Hypothesis: recent branches are correlated; that is, behavior of
recently executed branches affects prediction of current branch

Hypothesis: recent branches are correlated; that is, behavior of
recently executed branches affects prediction of current branch

Correlating PredictorsCorrelating Predictors

• The behavior of branch b3 is correlated with the behavior of b1 and b2

• Clearly of both branches b1 and b2 are untaken, then b3 will be taken

• A predictor that uses only the behavior of a single branch to predict
the outcome of that branch can never capture this behavior

• Branch predictors that use the behavior of other branches to make a
prediction are called correlating or two-level predictors

Total size = 2m ¥ n ¥ # prediction entries selected by branch addressTotal size = 2m ¥ n ¥ # prediction entries selected by branch address

(2,2) Correlating Predictors(2,2) Correlating Predictors

• Record m most recently
executed branches as taken
or not taken, and use that
pattern to select the proper
branch history table

• (m,n) predictor means record
last m branches to select
between 2m history tables
each with n-bit counters
– Old 2-bit branch history table

is a (0,2) predictor

• In a (2,2) predictor, the
behavior of recent branches
selects between, four
predictions of next branch,
updating just that prediction

n 4096 entries (2 bits/entry)

n Unlimited entries (2 bits/entry)

n 1024 entries (2,2)

Accuracy of DifferentAccuracy of Different

SchemesSchemes

if (d==0)

 d=1;

if (d==1)

BNEZ R1, L1 ; branch b1 (d!=0)
DADDI R1, R0, #1 ; d==0, sp d=1

L1: DSUBUI R3, R1, #1
BNEZ R3, L2 ; branch b2 (d!=1)

….
L2:

ExampleExample

• Assume that d has values 0, 1, or 2 (alternating
between 0, 2)

• Assume that the sequence will be executed repeatedly

• Ignore all other branches including those causing the
sequence to repeat

• All branches are initially predicted to untaken state

if (d==0)

 d=1;

if (d==1)

BNEZ R1, L1 ; branch b1 (d!=0)
DADDI R1, R0, #1 ; d==0, sp d=1

L1: DSUBUI R3, R1, #1
BNEZ R3, L2 ; branch b2 (d!=1)

….
L2:

ExampleExample
With a single bit predictor

• All branches are mispredicted

d=? b1
prediction

b1
action

New b1
prediction

b2
prediction

b2
action

New b2
prediction

2 NT T T NT T T

0 T NT NT T NT NT

2 NT T T NT T T

0 T NT NT T NT NT

if (d==0)

 d=1;

if (d==1)

BNEZ R1, L1 ; branch b1 (d!=0)
DADDI R1, R0, #1 ; d==0, sp d=1

L1: DSUBUI R3, R1, #1
BNEZ R3, L2 ; branch b2 (d!=1)

….
L2:

ExampleExample
With one bit predictor with one bit of correlation

• Except for first iteration, all branches are correctly predicted

d=? b1
prediction

b1
action

New b1
prediction

b2
prediction

b2
action

New b2
prediction

2 NT/NT T T/NT NT/NT T NT/T

0 T/NT NT T/NT NT/T NT NT/T

2 T/NT T T/NT NT/T T NT/T

0 T/NT NT T/NT NT/T NT NT/T

• Selection between the
two predictors are
based on a selector (2-
bit counter)

• Make a transition with
two wrong prediction
using the current table
for which the correct
prediction would have
been possible using
the other predictor

Predictor_1/Predictor_2

Tournament PredictorsTournament Predictors

• Multilevel branch predictors use several levels of branch prediction
tables together with an algorithm to choose among them

• Tournament selectors are the most popular form of multilevel
branch predictors (e.g. DEC Alpha 21264)

• Tournament predictors combines both local and global predictor

C
o

n
d

it
io

n
al

 b
ra

n
ch

 m
is

p
re

d
ic

ti
o

n
 r

at
e Based on SPEC 89 benchmark

Tournament predictors slightly outperform correlating predictors

Performance of TournamentPerformance of Tournament
PredictorsPredictors

