
CMSC 611: AdvancedCMSC 611: Advanced

Computer ArchitectureComputer Architecture

CacheCache

 Processor

Computer

Control

Datapath

Memory Devices

Input

Output

IntroductionIntroduction

• Why do designers need to know about Memory technology?
– Processor performance is usually limited by memory bandwidth

– As IC densities increase, lots of memory will fit on chip

• What are the different types of memory?

• How to maximize memory performance with least cost?

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

an
ce

Time

CPU-DRAM Gap“Moore’s Law”

Problem: Memory can be a bottleneck for processor performance

Solution: Rely on memory hierarchy of faster memory to bridge the gap

Processor-MemoryProcessor-Memory

PerformancePerformance

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
eg

isters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n

-C
h

ip
C

ach
e

Fastest Slowest
Smallest Biggest
Highest Lowest

Speed:
Size:

Cost:

Compiler
Hardware

Operating
System

Memory HierarchyMemory Hierarchy

• Temporal Locality (Locality in Time):
fi Keep most recently accessed data items closer to the processor

• Spatial Locality (Locality in Space):
fi Move blocks consists of contiguous words to the faster levels

Slower Level
MemoryFaster Level

Memory
To Processor

From Processor
Block X

Block Y

Slide: Dave Patterson

Memory HierarchyMemory Hierarchy

TerminologyTerminology
• Hit: data appears in some block in the faster level (example: Block X)

– Hit Rate: the fraction of memory access found in the faster level

– Hit Time: Time to access the faster level which consists of

• Memory access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the slower level (Block Y)

– Miss Rate = 1 - (Hit Rate)

– Miss Penalty: Time to replace a block in the upper level + Time to
deliver the block the processor

• Hit Time << Miss Penalty

Memory Hierarchy DesignMemory Hierarchy Design

IssuesIssues
• Block identification

– How is a block found if it is in the upper (faster) level?
• Tag/Block

• Block placement
– Where can a block be placed in the upper (faster) level?

• Fully Associative, Set Associative, Direct Mapped

• Block replacement
– Which block should be replaced on a miss?

• Random, LRU

• Write strategy
– What happens on a write?

• Write Back or Write Through (with Write Buffer)

Slide: Dave Patterson

a. Before the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

b. After the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

Xn

X2X2

Requesting Xn

generates a miss and
the word Xn will be
brought from main
memory to cache

Issues:
• How do we know that a data item is in cache?
• If so, How to find it?

The Basics of CacheThe Basics of Cache

• Cache: level of hierarchy closest to processor

• Caches first appeared in research machines in early 1960s

• Virtually every general-purpose computer produced today
includes cache

00001 00101 01001 01101 10001 10101 11001 11101

Cache

Memory

Cache block address = (Block address) modulo (Number of cache blocks)

Memory words can be
mapped only to one
cache block

 Cache DataValid Bit

Byte 0Byte 1Byte 3

 Cache Tag

Byte 2

• Worst case is to keep replacing
a block followed by a miss for it:
Ping Pong Effect

• To reduces misses:

– make the cache size bigger

– multiple entries for the same
Cache Index

Direct-Mapped CacheDirect-Mapped Cache

cache
blocks

Tag

Valid bit

Word
size

Accessing CacheAccessing Cache

• Cache Size depends on:
– # cache blocks

– # address bits

– Word size

• Example:
– For n-bit address, 4-byte

word & 1024 cache
blocks:

– cache size =

1024 [(n-10 -2) + 1 + 32] bit

Address (showing bit positions)

20 10

Byte
offset

Valid Tag DataIndex

0

1

2

1021

1022

1023

Tag

Index

Hit Data

20 32

31 30 13 12 11 2 1 0

Cache with Multi-Word/BlockCache with Multi-Word/Block
Address (showing bit positions)

16 12 Byte
offset

V Tag Data

Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 32 1 0

• Takes advantage of spatial locality to improve performance

• Cache block address = (Block address) modulo (Number of cache
blocks)

• Block address = (byte address) / (bytes per block)

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Average
Access

Time

Increased Miss Penalty
& Miss Rate

Block Size Block Size
Slide: Dave Patterson

Determining Block SizeDetermining Block Size

• Larger block size take advantage of spatial locality BUT:
– Larger block size means larger miss penalty:

• Takes longer time to fill up the block

– If block size is too big relative to cache size, miss rate will go up
• Too few cache blocks

• Average Access Time =

Hit Time * (1 - Miss Rate) + Miss Penalty * Miss Rate

1

2
Tag

Data

Block # 0 1 2 3 4 5 6 7

Search

Direct mapped

1

2
Tag

Data

Set # 0 1 2 3

Search

Set associative

1

2
Tag

Data

Search

Fully associative

Cache utilization

Hardware Complexity

• Set number = (Block number) modulo (Number of sets in the cache)

• Increased flexibility of block placement reduces probability of cache misses

Block PlacementBlock Placement

:

 Cache Data

Byte 0

0431

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

 Cache Tag

Byte Select

Ex: 0x01

X

X

X

X

X

Fully Associative CacheFully Associative Cache

• Forget about the Cache Index

• Compare the Cache Tags of all cache entries in parallel

• Example: Block Size = 32 Byte blocks, we need N 27-bit comparators

• By definition: Conflict Miss = 0 for a fully associative cache

Slide: Dave Patterson

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit Slide: Dave Patterson

N-way Set Associative CacheN-way Set Associative Cache

• N entries for each Cache Index

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache

– The two tags in the set are compared in parallel

– Data is selected based on the tag result

Tag size increases with
higher level of associativity
Tag size increases with
higher level of associativity

Locating a Block inLocating a Block in

Associative CacheAssociative Cache
Address

22 8

V TagIndex

0
1
2

253
254
255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

Handling Cache MissesHandling Cache Misses

• Misses for read access always bring blocks from main memory

• Write access requires careful maintenance of consistency between
cache and main memory

• Two possible strategies for handling write access misses:
– Write through: The information is written to both the block in the cache and to

the block in the slower memory
• Read misses cannot result in writes

• No allocation of a cache block is needed

• Always combined with write buffers so that don’t wait for slow memory

– Write back: The information is written only to the block in the cache. The
modified cache block is written to main memory only when it is replaced

• Is block clean or dirty?

• No writes to slow memory for repeated write accesses

• Requires allocation of a cache block

Processor
Cache

Write Buffer

DRAM

• Processor writes data into the cache and the write buffer

• Memory controller writes contents of the buffer to memory

• Increased write frequency can cause saturation of write buffer

• If CPU cycle time too fast and/or too many store instructions in a row:
– Store buffer will overflow no matter how big you make it

– The CPU Cycle Time get closer to DRAM Write Cycle Time

• Write buffer saturation can be handled by installing a second level (L2) cache

Processor
Cache

Write Buffer

DRAML2
Cache

Slide: Dave Patterson

Write Through via BufferingWrite Through via Buffering

• Empirical results indicates less significance of replacement strategy with
 increased cache sizes

Slide: Dave Patterson

Block Replacement StrategyBlock Replacement Strategy
• Straight forward for Direct Mapped since every block has only one

location

• Set Associative or Fully Associative:

– Random: pick any block

– LRU (Least Recently Used)
• requires tracking block reference
• for two-way set associative cache, reference bit attached to every block
• more complex hardware is needed for higher level of cache associativity

2-way 4-way 8-way Associativity

Size
LRU Random LRU Random LRU Random

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

penalty miss Read rate miss Read
Program

Read
 cycles stall-Read ¥¥=

†

CPU time = (CPU execution clock cycles + Memory -stall clock cycles) ¥ Clock cycle time

cycles stall- Write cycles stall-Read cycles clock stall-Memory +=

stalls buffer Write penalty miss Write rate miss Write
Program

Write
 cycles stall-Write +˜̃

¯

ˆ
ÁÁ
Ë

Ê
¥¥=

For write-through scheme: Hard to control, assume
enough buffer size

Measuring Cache PerformanceMeasuring Cache Performance

• To enhance cache performance, one can:
– reduce the miss rate (e.g. diminishing blocks collision

probability)

– reduce the miss penalty (e.g. adding multi-level caching)

– Enhance hit access time (e.g. simple and small cache)

Assume an instruction cache miss rate for gcc of 2% and a data cache miss rate of 4%.
If a machine has a CPI of 2 without any memory stalls and the miss penalty is 40 cycles
for all misses, determine how much faster a machine would run with a perfect cache that
never missed. Assume 36% combined frequencies for load and store instructions

Answer:

Assume number of instructions = I

The number of memory miss cycles = I ¥ 2% ¥ 40 = 0.8 ¥ I

Data miss cycles = I ¥ 36% ¥ 4% ¥ 40 = 0.56 ¥ I

Total number of memory-stall cycles = 0.8 I + 0.56 I = 1.36 I

The CPI with memory stalls = 2 + 1.36 = 3.36

2

363

cycle ClockI

cycle ClockI

cache perfect withtime CPU

stalls withtime CPU .
==

¥¥

¥¥
=

perfect

stall

perfect

stall

CPI

CPI

CPI

CPI

What happen if CPU gets faster?What happen if CPU gets faster?

ExampleExample

Suppose we have a 500 MHz processor with a base CPI of 1.0 with no cache misses.
Assume memory access time is 200 ns and average cache miss rate is 5%. Compare
performance after adding a second level cache, with access time 20 ns, that reduces
miss rate to main memory to 2%.

Answer:

The miss penalty to main memory = 200/cycle time

 = 200 ¥ 500/1000 = 100 clock cycles

Effective CPI = Base CPI + memory-stall cycles/instr. = 1 + 5% ¥ 100 = 6.0

With two-level caches

The miss penalty for accessing 2nd cache = 20 ¥ 500/1000 = 10 clock cycles

Total CPI = Base CPI + main memory-stall cycles/instruction +

 secondary cache stall cycles/instruction

 = 1 + 2% ¥ 100 + 5% ¥ 10 = 3.5

Multi-level Cache PerformanceMulti-level Cache Performance

