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IntroductionIntroduction

• Why do designers need to know about Memory technology?
– Processor performance is usually limited by memory bandwidth

– As IC densities increase, lots of memory will fit on chip

• What are the different types of memory?

• How to maximize memory performance with least cost?
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CPU-DRAM Gap“Moore’s Law”

Problem: Memory can be a bottleneck for processor performance

Solution: Rely on memory hierarchy of faster memory to bridge the gap

Processor-MemoryProcessor-Memory

PerformancePerformance
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Memory HierarchyMemory Hierarchy

•  Temporal Locality (Locality in Time):
fi Keep most recently accessed data items closer to the processor

•  Spatial Locality (Locality in Space):
fi Move blocks consists of contiguous words to the faster levels
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Slide: Dave Patterson

Memory HierarchyMemory Hierarchy

TerminologyTerminology
• Hit: data appears in some block in the faster level (example: Block X)

– Hit Rate: the fraction of memory access found in the faster level

– Hit Time: Time to access the faster level which consists of

• Memory access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the slower level (Block Y)

– Miss Rate  = 1 - (Hit Rate)

– Miss Penalty: Time to replace a block in the upper level  + Time to
deliver the block the processor

• Hit Time << Miss Penalty



Memory Hierarchy DesignMemory Hierarchy Design

IssuesIssues
• Block identification

– How is a block found if it is in the upper (faster) level?
• Tag/Block

• Block placement
– Where can a block be placed in the upper (faster) level?

• Fully Associative, Set Associative, Direct Mapped

• Block replacement
– Which block should be replaced on a miss?

• Random, LRU

• Write strategy
– What happens on a write?

• Write Back or Write Through (with Write Buffer)

Slide: Dave Patterson
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Issues:
• How do we know that a data item is in cache?
• If so, How to find it?

The Basics of CacheThe Basics of Cache

• Cache: level of hierarchy closest to processor

• Caches first appeared in research machines in early 1960s

• Virtually every general-purpose computer produced today
includes cache
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Cache

Memory

Cache block address = (Block address) modulo (Number of cache blocks)

Memory words can be
mapped only to one
cache block

 Cache DataValid Bit

Byte 0Byte 1Byte 3

 Cache Tag

Byte 2

• Worst case is to keep replacing
a block followed by a miss for it:
Ping Pong Effect

• To reduces misses:

– make the cache size bigger

– multiple entries for the same
Cache Index

Direct-Mapped CacheDirect-Mapped Cache



# cache
blocks

Tag

Valid bit

Word
size

Accessing CacheAccessing Cache

• Cache Size depends on:
– # cache blocks

– # address bits

– Word size

• Example:
– For n-bit address, 4-byte

word & 1024 cache
blocks:

– cache size =

1024 [(n-10 -2) + 1 + 32] bit

Address (showing bit positions)

20 10

Byte
offset

Valid Tag DataIndex

0

1

2

1021

1022

1023

Tag

Index

Hit Data

20 32

31 30 13 12 11 2 1 0



Cache with Multi-Word/BlockCache with Multi-Word/Block
Address (showing bit positions)

16 12 Byte
offset

V Tag Data

Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 32 1 0

• Takes advantage of spatial locality to improve performance

• Cache block address = (Block address) modulo (Number of cache
blocks)

• Block address = (byte address) / (bytes per block)
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Block Size Block Size
Slide: Dave Patterson

Determining Block SizeDetermining Block Size

• Larger block size take advantage of spatial locality BUT:
– Larger block size means larger miss penalty:

• Takes longer time to fill up the block

– If block size is too big relative to cache size, miss rate will go up
• Too few cache blocks

• Average Access Time =

Hit Time * (1 - Miss Rate)  +  Miss Penalty * Miss Rate
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Hardware Complexity

•  Set number = (Block number) modulo (Number of sets in the cache)

•  Increased flexibility of block placement reduces probability of cache misses

Block PlacementBlock Placement



:

 Cache Data

Byte 0

0431

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

 Cache Tag

Byte Select

Ex: 0x01

X

X

X

X

X

Fully Associative CacheFully Associative Cache

• Forget about the Cache Index

• Compare the Cache Tags of  all cache entries in parallel

• Example: Block Size = 32 Byte blocks, we need N 27-bit comparators

• By definition: Conflict Miss = 0 for a fully associative cache

Slide: Dave Patterson



Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit Slide: Dave Patterson

N-way Set Associative CacheN-way Set Associative Cache

• N entries for each Cache Index

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache

– The two tags in the set are compared in parallel

– Data is selected based on the tag result



Tag size increases with
higher level of associativity
Tag size increases with
higher level of associativity

Locating a Block inLocating a Block in

Associative CacheAssociative Cache
Address

22 8

V TagIndex

0
1
2

253
254
255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0



Handling Cache MissesHandling Cache Misses

• Misses for read access always bring blocks from main memory

• Write access requires careful maintenance of consistency between
cache and main memory

• Two possible strategies for handling write access misses:
– Write through: The information is written to both the block in the cache and to

the block in the slower memory
• Read misses cannot result in writes

• No allocation of a cache block is needed

• Always combined with write buffers so that don’t wait for slow memory

– Write back: The information is written only to the block in the cache. The
modified cache block is written to main memory only when it is replaced

• Is block clean or dirty?

• No writes to slow memory for repeated write accesses

• Requires allocation of a cache block



Processor
Cache

Write Buffer

DRAM

•  Processor writes data into the cache and the write buffer

•  Memory controller writes contents of the buffer to memory

•  Increased write frequency can cause saturation of write buffer

•  If CPU cycle time too fast and/or too many store instructions in a row:
–  Store buffer will overflow no matter how big you make it

–  The CPU Cycle Time get closer to DRAM Write Cycle Time

•  Write buffer saturation can be handled by installing a second level (L2) cache

Processor
Cache

Write Buffer

DRAML2
Cache

Slide: Dave Patterson

Write Through via BufferingWrite Through via Buffering



• Empirical results indicates less significance of replacement strategy with
    increased cache sizes

Slide: Dave Patterson

Block Replacement StrategyBlock Replacement Strategy
• Straight forward for Direct Mapped since every block has only one

location

• Set Associative or Fully Associative:

–  Random: pick any block

–  LRU (Least Recently Used)
• requires tracking block reference
• for two-way set associative cache, reference bit attached to every block
• more complex hardware is needed for higher level of cache associativity

2-way 4-way 8-way Associativity

Size
LRU Random LRU Random LRU Random

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%



penalty miss Read  rate miss Read
Program

Read
  cycles stall-Read ¥¥=
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CPU time =  (CPU execution clock cycles +  Memory -stall clock cycles) ¥ Clock cycle time
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stalls buffer Write penalty miss  Write rate miss Write
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For write-through scheme: Hard to control, assume
enough buffer size

Measuring Cache PerformanceMeasuring Cache Performance

• To enhance cache performance, one can:
– reduce the miss rate (e.g. diminishing blocks collision

probability)

– reduce the miss penalty (e.g. adding multi-level caching)

– Enhance hit access time (e.g. simple and small cache)



Assume an instruction cache miss rate for gcc of 2% and a data cache miss rate of 4%.
If a machine has a CPI of 2 without any memory stalls and the miss penalty is 40 cycles
for all misses, determine how much faster a machine would run with a perfect cache that
never missed. Assume 36% combined frequencies for load and store instructions

Answer:

Assume number of instructions = I

The number of memory miss cycles = I ¥ 2% ¥ 40 = 0.8 ¥ I

Data miss cycles = I ¥ 36% ¥ 4% ¥ 40 = 0.56 ¥ I

Total number of memory-stall cycles = 0.8 I + 0.56 I = 1.36 I

The CPI with memory stalls = 2 + 1.36 = 3.36

2

363

cycle ClockI

cycle ClockI

cache perfect  withtime CPU

stalls  withtime CPU .
==

¥¥

¥¥
=

perfect

stall

perfect

stall

CPI

CPI

CPI

CPI

What happen if CPU gets faster?What happen if CPU gets faster?

ExampleExample



Suppose we have a 500 MHz processor with a base CPI of 1.0 with no cache misses.
Assume memory access time is 200 ns and average cache miss rate is 5%. Compare
performance after adding a second level cache, with access time 20 ns, that reduces
miss rate to main memory to 2%.

Answer:

The miss penalty to main memory = 200/cycle time

   = 200 ¥ 500/1000 = 100 clock cycles

Effective CPI = Base CPI + memory-stall cycles/instr. = 1 + 5%  ¥ 100 = 6.0

With two-level caches

The miss penalty for accessing 2nd cache = 20 ¥ 500/1000 = 10 clock cycles

Total CPI = Base CPI + main memory-stall cycles/instruction +

                   secondary cache stall cycles/instruction

   = 1 + 2% ¥ 100 + 5% ¥ 10 = 3.5

Multi-level Cache PerformanceMulti-level Cache Performance


