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1 Introduction

I. Modeled after drafting tool

A. Thin strip of wood or metal
B. Control smooth curved path by running between small wisighducks

Image from www.frets.com

Il. Graphics version = parametric curvg(s)

A. Control Points
1. Points in space that control spline’s shape. Like duckkafting splines
2. Interpolating = spline passes through control points
3. Approximating = spline passes near but not necessaribugfin control

points (most popular)
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B. Non-rational/ordinaryP(s) = vector of desired dimension

_ _ _ X(s)
1D: P(s) = (X(s)); 2D:P(s) = <:((((3) 3D:P(s) = (;(s%)
s



C. Rational:p(s) = homogeneous vector

(s) X X/W
B(s) = BZ/E:)) where (Y) = (y/w)
A(s) z z/w

D. Tangent, Normal, Binormal

A.

B
C.
D

Tangent,T = vector in direction of curve

. Normal,N = vector normal to curve, in direction of greatest curvature
Binormal,B = vector normal to curve, perpendicular to tangent and nbrma
. Define in terms of 1st and 2nd derivatives of curve:
X'(s)
P'is) = [Y(s = velocity(s)*T(s)
Z'(s)
X”(S)
P’(s) = Y“(s)) = linearAccel (s) * T (s) + centripidal Accel + N(s)
Z//(S)

Together, these make tReenet Frame T,N,B
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normal ize

(s) = normalize s
( P'(s)
T(s)
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2 Polynomial splines

I. About the only splines you will ever see.

Il. Most common in graphics: cubisY) for general rendering, quintisY) for CAD
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as’ +bs+cs+d = (a b c d)

(a b c d)s

= 6as+2b = (a b c d)
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0 = (a b c d)s
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Il. Constraints



A. Degreen polynomial has+ 1 coefficients:
as+b; as® +bs+c; as® + bs? +cs+d; ...

B. Solving forn+1 unknown coefficients requirest 1 constraints (so for cubic,
you need 4)

Typical types of constraints:
1. Pass throughf; ats

2. Have derivativeX/ ats

3. Have 2nd derivativ” ats

X' = (a b c d)
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IV. Fitting many control points

A. Global: fit with large system / high-degree polynomial

1. + Single curve
2. — Every control point has some affect on the entire curve

B. Piecewise: fit with many short curves, joined end-to-end

1. + Control points only affect local curve
2. — Must use some constraints to keep joins smooth

3 Spline zoo

|. Hermite

A. Give position and derivatives at each endpoint



B.

Xo, Xpats=s5=0; X, X] ats=s1 =1

Use conditions of the form

X0 = X =
X(1) = X =
X(0) = X =
X1 = X =
Or in matrix form:
(X0 X1 X5 X{)

ass+byj+csp+d
as; +bs; +cs; +d
3ast+2bsy+C
3as? +2bs; +¢

d
at+b+c+d
c
3a+2b+c

/ §l/)

2
1
0

or oow

Even thoughX(s) is a polynomial ins, it is linear in a, b, c andd. Solve as

linear equation!

(a b c d)

(X X X5 X)) H™
2
-2
1
1

(X0 X1 X5 X{)

-3 0 1
3 00
-2 10
-1 0 O

Can reuse this matrix fany curve specified by value and derivatives at the

endpoints

C. Can also reuse the same matrix for each component of thie:cur

~ X(S) ax bx Cx dx i
P(s)= [ Y(s) = ay by oy dy S
Z(s) az bz cz d 1
(A B C D)s
ax bx cox dx Xo X1 X5 X{
ay by o dy = Yo V1 Yé Y:{ H-1
az bz ¢z dz Zy 71 Z Z,
(ABCD = (B PR R)H)H!



Il. Natural

A. value, 1st and 2nd derivativesst 0 match previous

B. Even though segmented, each control pointdialsal effect on all segments!
C. Create single linear system to solve for coefficients lcfalve segments.
D. Natural because behavior is similar to drafting spline

. Interpolating

A. To fit mpoints, need polynomial of degree=m— 1
B. Single curve, each control point has global influence

C. Example: fit four points with a cubic
Pats=s=0,Pats=s =3 Pats=s5 =2 andFats=s3=1
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D. Basis functions
Full spline equation is

|3(S)=(|30 |31 |32 ﬁ3) M71§

Grouping control points and matrix gives coefficients.



Pe)=[(R P B RB)M s
Grouping matrix and polynomial terms gives a polynonbisis functions for

each control point. Total curve is a weighted average of tir@rol points,
with the weights given by the basis functions:

P = (B P B Ry [M 'S

fo(s)
. f3(s)
= Py(—3°+92 - Lst 1)+
P(YS— DL +99)+
Po(—ZS3+18%— I9)+
B3 -3+

E. Here is a graph of these four basis functions
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IV. Catmull-Rom

A. Too hard to give derivatives, so derive them from contaihps.

B. Endpoints?;, B,

C. Derivativess (B, — Ry), 3(P3 — Py)

D. Chosen to pass through all points, match value and 1stadieg at 1st end-
point, and preserve local control

E. Matrix

(@abcd = (B B JRB-FR 3FB-F))H?



Can use that equation as-is, or rearrange to find basis funscti

P = (B B 3(B-R) 3(AB-P))H'sS
00 -3 O
. - - - |10 0o -1
= (R P 2 -1
(R R B)lo 1 I 0 Hos
00 0 13
—3$3+— 35
L. L 3832 +1
— P, 2 2
(R R R R -3 +29+1s
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V. Cardinal
A. Catmull-Rom is good, but not enough control
B. Add tension parameter,to derivative terms
C. Endpoint;, B
D. Derivatives">™2 (B, — Fy), 152 (B — By)
E. t=1=cusp
0 < 1 < 1= sharper than Catmull-Rom
7 =0= Catmull-Rom
7 < 0 = flatter than Catmull-Rom
F. Example withry = —1 andt, ~ 1
.', \\«_\‘0
G. Matrix

(@ bcd = (AR B SRR 2FE-P)H!?



H. Basis functions:

P = (A B SB(FB-R) S2(FB-F))H 'S
00 -5 0
. - - -~ [10 o -ELr|
= (h P P B) 0 1 Lnu 02 H-1lg
1—
00 lfro TTZ 1-t1
—SA8 4+ (1- 1) — Sis

+
(2— 122T2)s3+ (1;2 —3)32+1
150 72) S+ (B3-(1-1))2+50s

2
1-1 1-1
- $— = &

=(PoP1Pzﬁa)(

I. Graph of basis functions fan, = -1, 17, =1
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VI. Beziér

A. Most common

B. Endpointsh, P;

C. Derivativest; — By, B;— B

D. Match derivatives by choice of interior control pointgdtions on successive
segments

E. Matrix
(abcd = (B B B-R B-RH?
F. Can also find points on Bexi curves usingleCastlejau’s algorithm. To find

the point 1/n of the way along the curve, find the points 1/iefway between
each pair of control points. Then find the point 1/n of the waiween each



pair of points just found. Then find the point 1/n of the waywietn the two
points just found.

deCastlejau’s algorithm generalizes easily to Bezurves of higher (or lower)
degree than just cubic. Just iterate the successive sslmtigias many times
as necessary until you get to a single point.

G. Basis functions

Ps) = (B P PA-R B-R)H!s
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These are known as thigernstein basis functions. Beziér curves can be ex-
tended to any degreepolynomial using the basis functions

Bns(s) = (?)tr(l—t)”‘r
In terms of the Bernstein basis functions, the curve eqoasio

P(s) = 51LoRBni(s)

4 Patches

I. Create arectangular patch by smoothly changing eachalquttints of one spline
curve along paths given by crossing set of spline curves.



Il. The patch is symmetric in which direction you considebtothe control splines
and which direction is the splines that sweep out the surface

Bst) = 5Lo(5LoRiBni(9)Bnj()
= YooYl B.iBni(S)Bmj(t)
= YoXito I_jl,jBn,i (8)Bm,j(t)
= 3o (Xin=o R.iBmj (t)) Bn,i(s)

1. I3.,j is known as the control mesh

IV. Render by subdividing (not covered here) or tesseltptito polygons.
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