

CMSC 491G/691G

Marc Olano

Lighting & Illumination

- Interaction of light with surfaces
- Local Illumination
 - Each point independent of every other
- Global Illumination
 - Lighting at one point affects others

#"

Lights

- $L = P_L P_S = W_S p_L W_L p_S$
- Directional: (x, y, z, 0)
 - Far enough away that rays are parallel
- Point: (x, y, z, 1)
 - Shines in all directions from point
 - Normally no falloff with distance
 - Physical: Attenuate I_L by 1/(L•L)
 - May require I_L > 1

Lights

- Spot
 - Point + direction and cone
 - Scale I_I by L•D^e
- Area
 - Line: like florescent tube
 - Patch: like light fixture
- Environment

Environment map

- Approximate light from all directions as seen by each point on surface
- Instead use light from all directions as seen by one representative point
- Distant environments
- Direction-based texture map

#"

Direction-based mapping

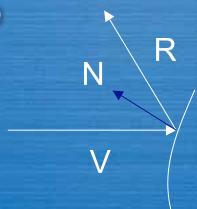
- Vector R = (x,y,z)
- Cube map
 - Six images on cube faces
 - Divide other two components by largest
 - Say it is y: (s,t,q) = (x, z, y)
 - S = x/y; T = z/y
 - Scale into texture: (S+1)/2, (T+1)/2

#"

Direction-based mapping

- Sphere map
 - (s,t) = (x,y) on shiny sphere refl. V to R
 - V = (0,0,-1)
 - $f(x, y, z) = x^2 + y^2 + z^2 1 = 0$
 - N half way between V and R
 - $-N = (V+R)/IV+RI = (2 \times, 2 \times, 2 \times)/2$
 - $(s,t,q) = x,y,sqrt(x^2+y^2+(z-1)^2)$

Direction-based mapping


- Parabolic maps
 - (s,t) = (x,y) on shiny parabola
 - Need two

•
$$V=(0,0,1)$$
; $f(x,y,z) = z + (x^2 + y^2)/2=0$

•
$$V=(0,0,-1)$$
; $f(x,y,z) = z - (x^2 + y^2)/2=0$

•
$$(s,t,q) = (x, y, z - 1)$$

•
$$(s,t,q) = (x, y, 1 - z)$$

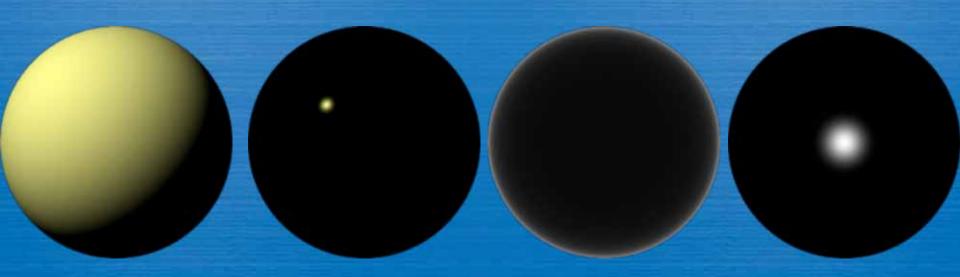
BRDF

- Bidirectional
 - Incoming & outgoing light directions
- Reflectance
 - Attenuation of reflected light
 - Not transmission or emission
- Distribution
 - Light in distributed to outgoing directions
 - Don't create new light
- Function

BRDF

- In terms of local surface coordinates
 - Only above surface
 - Direction: φ, θ or U, V (N)
 - $f(\phi_i, \theta_i, \phi_o, \theta_o)$
- Polar/spherical plot

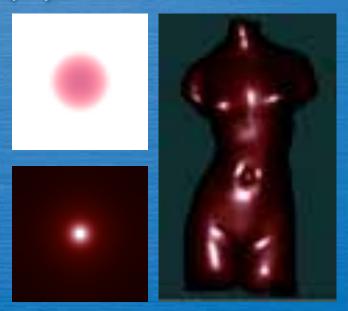
#

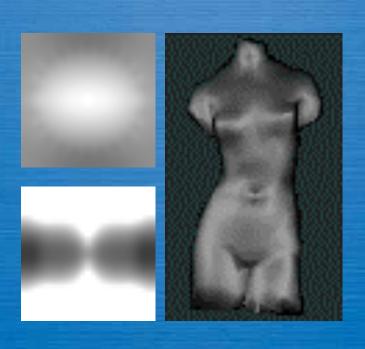

Physically plausible BRDF

- Positive everywhere
 - No negative light
- Conservation of Energy
 - No more light out than you put in
 - $\int f(V,L) dL \leq 1$
- Reciprocity
 - No one-way light valves
 - f(V,L) = f(L,V)

Decomposition

- Often decompose into components
 - f_{diffuse} + f_{specular} + f_{Fresnel} + f_{retroreflect} + ...


Microfacet models


- Microscopic reflective facets
- Probability distributions
 - Reflectance: Chance a facet has normal H=V+L
 - Shadowing: Chance another facet blocks L
 - Masking: Chance another facet blocks V

Homomorphic + Microfacet

- Factor into f(V), f(H), f(L)
- f(V) = masking = f(L) = shadowing
- f(H) = reflectance

#

Homomorphic Factorization

- $f(V,L) = f_0(v_0) f_1(v_1) f_2(v_2) \dots f_n(v_n)$
- Pick v₀ ...v_n, functions of V & L
- $\bullet \quad \log(f) = \log(f_0 f_1 f_2 \dots f_n)$
 - = $\log(f_0) + \log(f_1) + \log(f_2) + ... + \log(f_n)$
 - + smoothness terms
 - Solve for elements of log(f_i)
 - Big least-squares problem
 - Use exp(log(f_i)) as texture & v_i as texture coordinates

Reflectance map

- Diffuse: I(N) = texture
- Specular: I(H) = texture
 - Filtered environment map
 - BRDF as Filter

