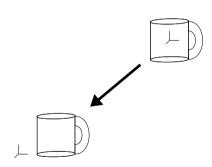
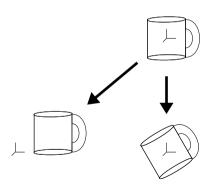
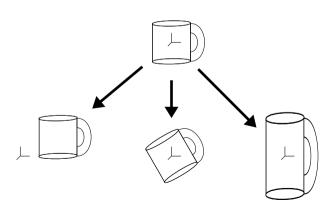
CMSC 435/634







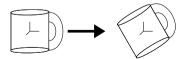
• Points on object represented as vector offset from origin

• Points on object represented as vector offset from origin

• Points on object represented as vector offset from origin

- Points on object represented as vector offset from origin
- Transform is a vector to vector function

•
$$\vec{p'} = f(\vec{p})$$



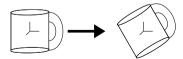
0000

Using Transformation

- Points on object represented as vector offset from origin
- Transform is a vector to vector function.

•
$$\vec{p'} = f(\vec{p})$$

- Relativity:
 - From $\vec{p'}$ point of view, object is transformed



- Points on object represented as vector offset from origin
- Transform is a vector to vector function.
 - $\vec{p'} = f(\vec{p})$
- Relativity:

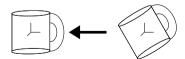
0000

- From $\vec{p'}$ point of view, object is transformed
- From \vec{p} point of view, coordinate system changes

- Points on object represented as vector offset from origin
- Transform is a vector to vector function

•
$$\vec{p'} = f(\vec{p})$$

- Relativity:
 - From $\vec{p'}$ point of view, object is transformed
 - From \vec{p} point of view, coordinate system changes
- Inverse transform, $\vec{p} = f^{-1}(\vec{p'})$



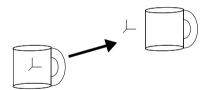
Order matters

0000

Order matters

0000

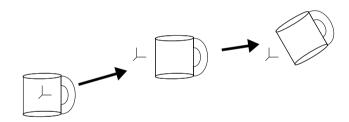
 $T(\vec{p})$



Order matters

0000

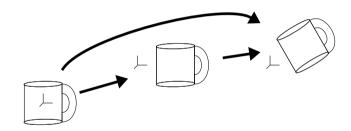
• $R(T(\vec{p}))$



Order matters

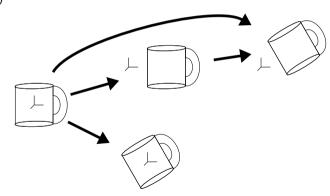
0000

• $R(T(\vec{p})) = R \circ T(\vec{p})$



Order matters

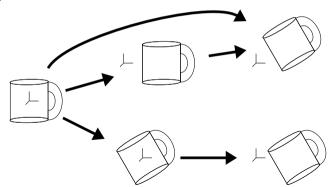
- $R(T(\vec{p})) = R \circ T(\vec{p})$
- R(p̄)



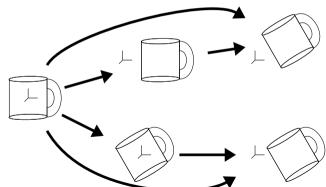
0000

Composing Transforms

- Order matters
 - $R(T(\vec{p})) = R \circ T(\vec{p})$
 - $T(R(\vec{p}))$

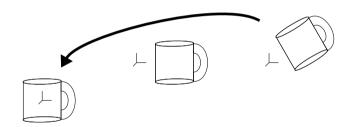


- Order matters
 - $R(T(\vec{p})) = R \circ T(\vec{p})$
 - $T(R(\vec{p})) = T \circ R(\vec{p})$

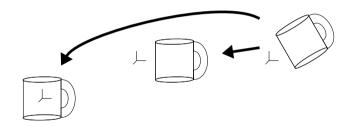


Reverse order

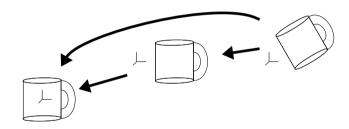
- Reverse order
 - $(R \circ T)^{-1}(\vec{p'})$



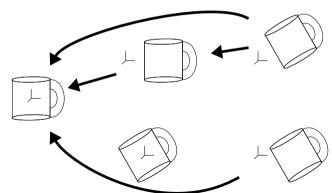
- Reverse order
 - $(R \circ T)^{-1}(\vec{p'}) = R^{-1}(\vec{p'})$



- Reverse order
 - $(R \circ T)^{-1}(\vec{p'}) = T^{-1}(R^{-1}(\vec{p'}))$

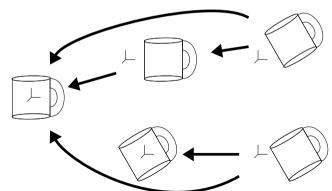


- Reverse order
 - $(R \circ T)^{-1}(\vec{p'}) = T^{-1}(R^{-1}(\vec{p'}))$ $(T \circ R)^{-1}(\vec{p'})$



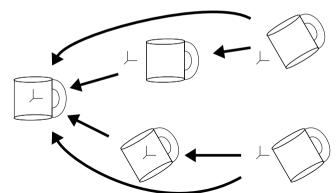
Reverse order

- $(R \circ T)^{-1}(\vec{p'}) = T^{-1}(R^{-1}(\vec{p'}))$ $(T \circ R)^{-1}(\vec{p'}) = T^{-1}(\vec{p'})$



Reverse order

- $(R \circ T)^{-1}(\vec{p'}) = T^{-1}(R^{-1}(\vec{p'}))$ $(T \circ R)^{-1}(\vec{p'}) = R^{-1}(T^{-1}(\vec{p'}))$



$$\bullet \ \, \vec{p'} = \vec{p} + \vec{t}$$



$$\bullet \ \vec{p'} = \vec{p} + \vec{t}$$

$$\bullet \begin{bmatrix} p_x' \\ p_y' \\ p_z' \end{bmatrix} = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} = \begin{bmatrix} p_x + t_x \\ p_y + t_y \\ p_z + t_z \end{bmatrix}$$

• \vec{t} says where \vec{p} -space origin ends up $(\vec{p'} = \vec{0} + \vec{t})$

$$\bullet \ \vec{p'} = \vec{p} + \vec{t}$$

$$\bullet \begin{bmatrix} p_x' \\ p_y' \\ p_z' \end{bmatrix} = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} = \begin{bmatrix} p_x + t_x \\ p_y + t_y \\ p_z + t_z \end{bmatrix}$$

- \vec{t} says where \vec{p} -space origin ends up $(\vec{p'} = \vec{0} + \vec{t})$
- Composition: $\vec{p'} = (\vec{p} + \vec{t_0}) + \vec{t_1} = \vec{p} + (\vec{t_0} + \vec{t_1})$

$$\bullet \quad \begin{bmatrix} p_x' \\ p_y' \\ p_z' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

$$\bullet \quad \begin{bmatrix} p_x' \\ p_y' \\ p_z' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

$$\bullet \quad \begin{bmatrix} p_x' \\ p_y' \\ p_z' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

$$\bullet \begin{bmatrix} a \\ d \\ g \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\bullet \begin{bmatrix} p_x' \\ p_y' \\ p_z' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

•
$$\begin{bmatrix} b \\ e \\ h \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\bullet \quad \begin{bmatrix} p_x' \\ p_y' \\ p_z' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

$$\bullet \begin{bmatrix} c \\ f \\ i \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\bullet \ \, \begin{bmatrix} p_x' \\ p_y' \\ p_z' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

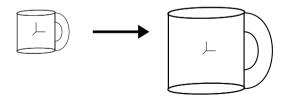
• Matrix says where \vec{p} -space axes end up

$$\bullet \begin{bmatrix} c \\ f \\ i \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

• Composition: $\vec{p'} = M (N \vec{p}) = (M N)\vec{p}$

Common case: Scaling

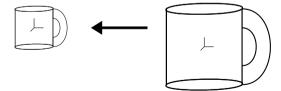
$$\bullet \begin{bmatrix} p_x' \\ p_y' \\ p_z' \end{bmatrix} = \begin{bmatrix} s_x & p_x \\ s_y & p_y \\ s_z & p_z \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & s_z \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$



Common case: Scaling

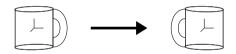
$$\bullet \begin{bmatrix} p_x' \\ p_y' \\ p_z' \end{bmatrix} = \begin{bmatrix} s_x & p_x \\ s_y & p_y \\ s_z & p_z \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & s_z \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

• Inverse: $\begin{bmatrix} 1/s_x & 0 & 0 \\ 0 & 1/s_y & 0 \\ 0 & 0 & 1/s_z \end{bmatrix}$



Common case: Reflection

Negative scaling

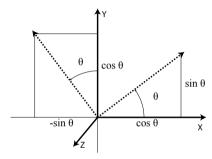


Common case: Reflection

Negative scaling

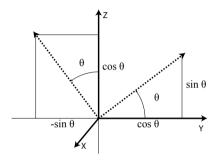
$$\bullet \begin{bmatrix} p_x' \\ p_y' \\ p_z' \end{bmatrix} = \begin{bmatrix} -p_x \\ p_y \\ p_z \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

Common case: Rotation



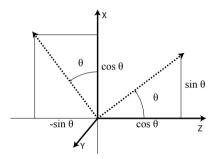
- Orthogonal, so $M^{-1} = M^T$
- Rotate around Z: $\vec{p'} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \vec{p}$

Common case: Rotation



- Orthogonal, so $M^{-1} = M^T$
- Rotate around X: $\vec{p'} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \vec{p}$

Common case: Rotation



- Orthogonal, so $M^{-1} = M^T$
- Rotate around Y: $\vec{p'} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \vec{p}$

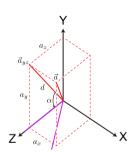
• Scale by s along axis \vec{a}

- Scale by s along axis \vec{a}
 - Rotate to align \vec{a} with Z

- Scale by s along axis \vec{a}
 - Rotate to align \vec{a} with Z
 - Scale along Z

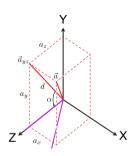
- Scale by s along axis \vec{a}
 - Rotate to align \vec{a} with Z
 - Scale along Z
 - Rotate back

• Projection of \vec{a} onto YZ: $\vec{a}_{yz} = \begin{bmatrix} 0 \\ a_y \\ a_z \end{bmatrix}$



• Projection of
$$\vec{a}$$
 onto YZ: $\vec{a}_{yz} = \begin{bmatrix} 0 \\ a_y \\ a_z \end{bmatrix}$

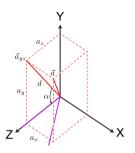
• length
$$d = \sqrt{(a_y)^2 + (a_z)^2}$$



• Projection of
$$\vec{a}$$
 onto YZ: $\vec{a}_{yz} = \begin{bmatrix} 0 \\ a_y \\ a_z \end{bmatrix}$

• length
$$d = \sqrt{(a_y)^2 + (a_z)^2}$$

• So
$$\cos \alpha = a_z/d$$
, $\sin \alpha = a_y/d$

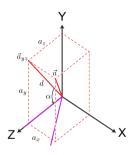


• Projection of
$$\vec{a}$$
 onto YZ: $\vec{a}_{yz} = \begin{bmatrix} 0 \\ a_y \\ a_z \end{bmatrix}$

• length
$$d = \sqrt{(a_y)^2 + (a_z)^2}$$

• So
$$\cos \alpha = a_z/d$$
, $\sin \alpha = a_y/d$

•
$$R_X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & a_z/d & -a_y/d \\ 0 & a_y/d & a_z/d \end{bmatrix}$$



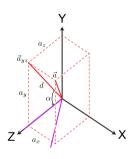
• Projection of
$$\vec{a}$$
 onto YZ: $\vec{a}_{yz} = \begin{bmatrix} 0 \\ a_y \\ a_z \end{bmatrix}$

• length
$$d = \sqrt{(a_y)^2 + (a_z)^2}$$

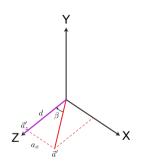
• So
$$\cos \alpha = a_z/d$$
, $\sin \alpha = a_y/d$

•
$$R_X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & a_z/d & -a_y/d \\ 0 & a_y/d & a_z/d \end{bmatrix}$$

• Result
$$\vec{a'} = \begin{bmatrix} a_X \\ 0 \\ d \end{bmatrix}$$

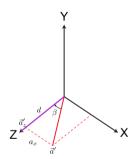


$$\bullet \ \vec{a'} = \begin{bmatrix} a_x \\ 0 \\ d \end{bmatrix}$$



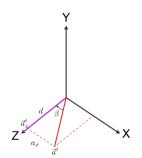
$$\bullet \ \vec{a'} = \begin{bmatrix} a_x \\ 0 \\ d \end{bmatrix}$$

$$ullet$$
 length $=1$



$$\bullet \ \vec{a'} = \begin{bmatrix} a_x \\ 0 \\ d \end{bmatrix}$$

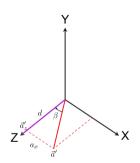
- length = 1
- So $\cos \beta = d$, $\sin \beta = a_x$



$$\bullet \ \vec{a'} = \begin{bmatrix} a_x \\ 0 \\ d \end{bmatrix}$$

- ullet length =1
- So $\cos \beta = d$, $\sin \beta = a_x$

$$\bullet \ R_Y = \begin{bmatrix} d & 0 & -a_X \\ 0 & 1 & 0 \\ a_X & 0 & d \end{bmatrix}$$

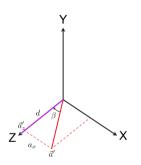


$$\bullet \ \vec{a'} = \begin{bmatrix} a_x \\ 0 \\ d \end{bmatrix}$$

- length = 1
- So $\cos \beta = d$, $\sin \beta = a_x$

$$\bullet \ R_Y = \begin{bmatrix} d & 0 & -a_X \\ 0 & 1 & 0 \\ a_X & 0 & d \end{bmatrix}$$

• Result
$$\vec{a'}' = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$



• Scale by
$$s$$
 along $Z: S_Z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s \end{bmatrix}$

• Scale by
$$s$$
 along $Z: S_Z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s \end{bmatrix}$

- Scale by s along axis \vec{a}
 - Rotate to align \vec{a} with Z

$$R_Y R_X \vec{p}$$

• Scale by
$$s$$
 along $Z: S_Z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s \end{bmatrix}$

- Scale by s along axis \vec{a}
 - Rotate to align \vec{a} with Z
 - Scale along Z

•
$$S_Z R_Y R_X \vec{p}$$

• Scale by
$$s$$
 along $Z: S_Z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s \end{bmatrix}$

- Scale by s along axis \vec{a}
 - Rotate to align \$\vec{a}\$ with Z
 - Scale along Z
 - Rotate back
 - $\vec{p'} = R_X^{-1} R_Y^{-1} S_Z R_Y R_X \vec{p}$

Affine Transforms

• Affine = Linear + Translation

Affine Transforms

- Affine = Linear + Translation
- Composition? $A (B \vec{p} + \vec{t_0}) + \vec{t_1} = A B \vec{p} + A \vec{t_0} + \vec{t_1}$
- Yuck!

$$\bullet \ \, \begin{bmatrix} p'_x \\ p'_y \\ p'_z \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

$$\bullet \begin{bmatrix} p_x' \\ p_y' \\ p_z' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

•
$$\vec{p'}_x = (a p_x + b p_y + c p_z) + t_x$$

$$\bullet \begin{bmatrix} p_x' \\ p_y' \\ p_z' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

•
$$\vec{p'}_x = (a p_x + b p_y + c p_z) + t_x$$

•
$$\vec{p'}_x = (a \ p_x + b \ p_y + c \ p_z) + t_x$$

• $\vec{p'}_y = (d \ p_x + e \ p_y + f \ p_z) + t_y$

$$\bullet \begin{bmatrix} p_x' \\ p_y' \\ p_z' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

•
$$\vec{p'}_x = (a p_x + b p_y + c p_z) + t_x$$

•
$$\vec{p'}_y = (d p_x + e p_y + f p_z) + t_y$$

•
$$\vec{p'}_z = (g p_x + h p_y + i p_z) + t_z$$

$$\bullet \begin{bmatrix} p_x' \\ p_y' \\ p_z' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

•
$$\vec{p'}_x = (a p_x + b p_y + c p_z) + t_x$$

•
$$\vec{p'}_y = (d p_x + e p_y + f p_z) + t_y$$

$$\bullet \vec{p'}_z = (g p_x + h p_y + i p_z) + t_z$$

•
$$1 = (0p_x + 0p_y + 0p_z) + 1$$

$$\bullet \ \, \begin{bmatrix} p_x' \\ p_y' \\ p_z' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

$$\bullet \begin{bmatrix} p'_{x} \\ p'_{y} \\ p'_{z} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t_{x} \\ d & e & f & t_{y} \\ g & h & i & t_{z} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \\ 1 \end{bmatrix}$$

$$\bullet \ \vec{p'} = \left[\begin{array}{ccc} \vec{x} & \vec{y} & \vec{z} \mid \vec{t} \end{array} \right] \vec{p}$$

$$\bullet \begin{bmatrix} p_x' \\ p_y' \\ p_z' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

$$\bullet \ \vec{p'} = \left[\begin{array}{ccc} \vec{x} & \vec{y} & \vec{z} \mid \vec{t} \end{array} \right] \vec{p}$$

• \vec{t} says where the \vec{p} -space origin ends up

Homogeneous Coordinates

$$\bullet \ \, \begin{bmatrix} p'_x \\ p'_y \\ p'_z \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

$$\bullet \ \vec{p'} = \left[\begin{array}{cc|c} \vec{x} & \vec{y} & \vec{z} & \vec{t} \end{array} \right] \vec{p}$$

- \vec{t} says where the \vec{p} -space origin ends up
- \vec{x} , \vec{y} , \vec{z} say where the \vec{p} -space axes end up

Homogeneous Coordinates

$$\bullet \begin{bmatrix} p_x' \\ p_y' \\ p_z' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

- $\bullet \ \vec{p'} = \left[\begin{array}{cc|c} \vec{x} & \vec{y} & \vec{z} & \vec{t} \end{array} \right] \vec{p}$
 - \vec{t} says where the \vec{p} -space origin ends up
 - \vec{x} , \vec{y} , \vec{z} say where the \vec{p} -space axes end up
- Composition: Just matrix multiplies!

• Rotate by θ about line between $\vec{p_0}$ and $\vec{p_1}$:

- Rotate by θ about line between $\vec{p_0}$ and $\vec{p_1}$:
 - Translate \vec{p}_0 to origin

• T

- Rotate by θ about line between $\vec{p_0}$ and $\vec{p_1}$:
 - Translate \vec{p}_0 to origin
 - Rotate to align $\vec{p_1} \vec{p_0}$ with Z

 $R_Y R_X T$

- Rotate by θ about line between $\vec{p_0}$ and $\vec{p_1}$:
 - Translate \vec{p}_0 to origin
 - Rotate to align $\vec{p_1} \vec{p_0}$ with Z
 - Rotate by θ around Z

•
$$R_Z(\theta)R_YR_XT$$

- Rotate by θ about line between $\vec{p_0}$ and $\vec{p_1}$:
 - Translate \vec{p}_0 to origin
 - Rotate to align $\vec{p_1} \vec{p_0}$ with Z
 - Rotate by θ around Z
 - Undo $\vec{p_1} \vec{p_0}$ rotation
- $P_X^{-1}R_Y^{-1}R_Z(\theta)R_YR_XT$

- Rotate by θ about line between $\vec{p_0}$ and $\vec{p_1}$:
 - Translate \vec{p}_0 to origin
 - Rotate to align $\vec{p_1} \vec{p_0}$ with Z
 - Rotate by θ around Z
 - Undo $\vec{p_1} \vec{p_0}$ rotation
 - Undo translation
- $T^{-1}R_X^{-1}R_Y^{-1}R_Z(\theta)R_YR_XT$

• Transform by Jacobian Matrix

- Transform by Jacobian Matrix
- Matrix of partial derivatives

- Transform by Jacobian Matrix
- Matrix of partial derivatives

$$\bullet \begin{bmatrix} \vec{p'}_x \\ \vec{p'}_y \\ \vec{p'}_z \end{bmatrix} = \begin{bmatrix} a p_x + b p_y + c p_z + t_x \\ d p_x + e p_y + f p_z + t_y \\ g p_x + h p_y + i p_z + t_z \end{bmatrix}$$

- Transform by Jacobian Matrix
- Matrix of partial derivatives

$$\bullet \begin{bmatrix} \vec{p'}_{x} \\ \vec{p'}_{y} \\ \vec{p'}_{z} \end{bmatrix} = \begin{bmatrix} a \ p_{x} + b \ p_{y} + c \ p_{z} + t_{x} \\ d \ p_{x} + e \ p_{y} + f \ p_{z} + t_{y} \\ g \ p_{x} + h \ p_{y} + i \ p_{z} + t_{z} \end{bmatrix}
\bullet J = \begin{bmatrix} \partial p'_{x} / \partial p_{x} & \partial p'_{x} / \partial p_{y} & \partial p'_{x} / \partial p_{z} \\ \partial p'_{y} / \partial p_{x} & \partial p'_{y} / \partial p_{y} & \partial p'_{y} / \partial p_{z} \\ \partial p'_{z} / \partial p_{x} & \partial p'_{z} / \partial p_{y} & \partial p'_{z} / \partial p_{z} \end{bmatrix}$$

- Transform by Jacobian Matrix
- Matrix of partial derivatives

$$\bullet \begin{bmatrix} \vec{p'}_{x} \\ \vec{p'}_{y} \\ \vec{p'}_{z} \end{bmatrix} = \begin{bmatrix} a \ p_{x} + b \ p_{y} + c \ p_{z} + t_{x} \\ d \ p_{x} + e \ p_{y} + f \ p_{z} + t_{y} \\ g \ p_{x} + h \ p_{y} + i \ p_{z} + t_{z} \end{bmatrix}$$

$$\bullet J = \begin{bmatrix} a & \partial p'_{x}/\partial p_{y} & \partial p'_{x}/\partial p_{z} \\ \partial p'_{y}/\partial p_{x} & \partial p'_{y}/\partial p_{y} & \partial p'_{y}/\partial p_{z} \\ \partial p'_{z}/\partial p_{x} & \partial p'_{z}/\partial p_{y} & \partial p'_{z}/\partial p_{z} \end{bmatrix}$$

- Transform by Jacobian Matrix
- Matrix of partial derivatives

$$\bullet \begin{bmatrix} \vec{p'}_{x} \\ \vec{p'}_{y} \\ \vec{p'}_{z} \end{bmatrix} = \begin{bmatrix} a \ p_{x} + b \ p_{y} + c \ p_{z} + t_{x} \\ d \ p_{x} + e \ p_{y} + f \ p_{z} + t_{y} \\ g \ p_{x} + h \ p_{y} + i \ p_{z} + t_{z} \end{bmatrix} \\
\bullet J = \begin{bmatrix} a & b & \partial p'_{x}/\partial p_{z} \\ \partial p'_{y}/\partial p_{x} & \partial p'_{y}/\partial p_{y} & \partial p'_{y}/\partial p_{z} \\ \partial p'_{z}/\partial p_{x} & \partial p'_{z}/\partial p_{y} & \partial p'_{z}/\partial p_{z} \end{bmatrix}$$

- Transform by Jacobian Matrix
- Matrix of partial derivatives

$$\bullet \begin{bmatrix} \vec{p'}_x \\ \vec{p'}_y \\ \vec{p'}_z \end{bmatrix} = \begin{bmatrix} a \ p_x + b \ p_y + c \ p_z + t_x \\ d \ p_x + e \ p_y + f \ p_z + t_y \\ g \ p_x + h \ p_y + i \ p_z + t_z \end{bmatrix} \\
\bullet J = \begin{bmatrix} a & b & c \\ \partial p'_y / \partial p_x & \partial p'_y / \partial p_y & \partial p'_y / \partial p_z \\ \partial p'_z / \partial p_x & \partial p'_z / \partial p_y & \partial p'_z / \partial p_z \end{bmatrix}$$

- Transform by Jacobian Matrix
- Matrix of partial derivatives

$$\bullet \begin{bmatrix} \vec{p'}_x \\ \vec{p'}_y \\ \vec{p'}_z \end{bmatrix} = \begin{bmatrix} a p_x + b p_y + c p_z + t_x \\ d p_x + e p_y + f p_z + t_y \\ g p_x + h p_y + i p_z + t_z \end{bmatrix}$$

$$\bullet J = \begin{bmatrix} a & b & c \\ d & e & f \\ \partial p'_z / \partial p_x & \partial p'_z / \partial p_y & \partial p'_z / \partial p_z \end{bmatrix}$$

- Transform by Jacobian Matrix
- Matrix of partial derivatives

$$\begin{bmatrix}
\vec{p'}_{x} \\
\vec{p'}_{y} \\
\vec{p'}_{z}
\end{bmatrix} = \begin{bmatrix}
a p_{x} + b p_{y} + c p_{z} + t_{x} \\
d p_{x} + e p_{y} + f p_{z} + t_{y} \\
g p_{x} + h p_{y} + i p_{z} + t_{z}
\end{bmatrix}$$

$$J = \begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}$$

Upper-left 3x3

• Normal should remain perpendicular to tangent vectors

- Normal should remain perpendicular to tangent vectors
- $\vec{n} \cdot \vec{v} = \vec{n'} \cdot \vec{v'} = 0$

• Normal should remain perpendicular to tangent vectors

$$\vec{n} \cdot \vec{v} = \vec{n'} \cdot \vec{v'} = 0$$

Normal should remain perpendicular to tangent vectors

$$\vec{n} \cdot \vec{v} = \vec{n'} \cdot \vec{v'} = 0$$

•
$$\vec{n} \cdot \vec{v} = \vec{n'} \cdot \vec{v'} = 0$$

• $\begin{bmatrix} n_x & n_y & n_z \end{bmatrix} I \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = 0$

- Normal should remain perpendicular to tangent vectors

•
$$\vec{n} \cdot \vec{v} = \vec{n'} \cdot \vec{v'} = 0$$

• $\begin{bmatrix} n_x & n_y & n_z \end{bmatrix} (J^{-1}J) \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = 0$

- Normal should remain perpendicular to tangent vectors
- $\vec{n} \cdot \vec{v} = \vec{n'} \cdot \vec{v'} = 0$

•
$$([n_x \quad n_y \quad n_z] J^{-1}) \left(J \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}\right) = 0$$

- Normal should remain perpendicular to tangent vectors

•
$$\vec{n} \cdot \vec{v} = \vec{n'} \cdot \vec{v'} = 0$$

• $(\begin{bmatrix} n_x & n_y & n_z \end{bmatrix} J^{-1}) \begin{bmatrix} v_x' \\ v_y' \\ v_z' \end{bmatrix} = 0$

- Normal should remain perpendicular to tangent vectors
- $\vec{n} \cdot \vec{v} = \vec{n'} \cdot \vec{v'} = 0$

•
$$\begin{bmatrix} n'_x & n'_y & n'_z \end{bmatrix} \begin{bmatrix} v'_x \\ v'_y \\ v'_z \end{bmatrix} = 0$$

• $\vec{n'} = \vec{n}J^{-1}$

$$\bullet \ \vec{n'} = \vec{n}J^{-1}$$

- Normal should remain perpendicular to tangent vectors
- $\vec{n} \cdot \vec{v} = \vec{n'} \cdot \vec{v'} = 0$

$$\bullet \ \begin{bmatrix} n'_x & n'_y & n'_z \end{bmatrix} \begin{bmatrix} v'_x \\ v'_y \\ v'_z \end{bmatrix} = 0$$

- $\bullet \ \vec{n'} = \vec{n}J^{-1}$
- Multiply by inverse on right

- Normal should remain perpendicular to tangent vectors
- $\vec{n} \cdot \vec{v} = \vec{n'} \cdot \vec{v'} = 0$

$$\bullet \ \begin{bmatrix} n'_{x} & n'_{y} & n'_{z} \end{bmatrix} \begin{bmatrix} v'_{x} \\ v'_{y} \\ v'_{z} \end{bmatrix} = 0$$

- $\bullet \ \vec{n'} = \vec{n}J^{-1}$
- Multiply by inverse on right
- OR multiply column normal by inverse transpose

- Normal should remain perpendicular to tangent vectors
- $\bullet \ \vec{n} \cdot \vec{v} = \vec{n'} \cdot \vec{v'} = 0$

$$\bullet \ \begin{bmatrix} n'_{x} & n'_{y} & n'_{z} \end{bmatrix} \begin{bmatrix} v'_{x} \\ v'_{y} \\ v'_{z} \end{bmatrix} = 0$$

- $\vec{n'} = \vec{n}J^{-1}$
- Multiply by inverse on right
- OR multiply *column* normal by inverse transpose
 - $(J^{-1})^T = J$ if J is orthogonal (only rotations)