Matrices 00000 Dot Product 000 Cross Product 00

Linear Algebra Review

CMSC 435/634

Cross Product 00

Abstract Vectors

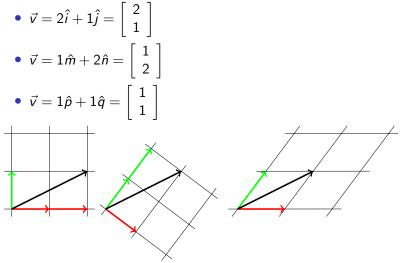
- $(\vec{u}, \vec{v}, \vec{w} \text{ vectors}; a, b, c \text{ scalars})$
 - Addition: $\vec{u} + \vec{v}$ is a vector
 - Scalar Multiplication: aū is a vector
 - Commutitive: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
 - Distributive: $(a + b)\vec{u} = a\vec{u} + b\vec{u}$
 - Distributive: $a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$
 - Associative: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$

Matrices •0000 Dot Product

Cross Product

Basis Vectors

Vector as linear combination of basis vectors



Matrices
00000

Cross Product

Notation

• Column:
$$\vec{v} = \begin{bmatrix} v_0 \\ v_1 \end{bmatrix}$$

Some texts use columns for everything

• Row:
$$\vec{v} = \begin{bmatrix} v_0 & v_1 \end{bmatrix}$$

- Some texts use rows for everything
- Results in transposes and swapped order from what we'll use
- I like columns for points/vectors, rows for normals

Cross Product

Matrices

• Matrix:
$$A = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} = [a_{i,j}] = [a_{row,column}]$$

• Transpose: $A^T = \begin{bmatrix} a_{0,0} & a_{1,0} \\ a_{0,1} & a_{1,1} \end{bmatrix} = [a_{j,i}]$
• Multiply: $AB = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} \begin{bmatrix} b_{0,0} & b_{0,1} \\ b_{1,0} & b_{1,1} \end{bmatrix} = \begin{bmatrix} a_{0,0}b_{0,0} + a_{0,1}b_{1,0} & a_{0,0}b_{0,1} + a_{0,1}b_{1,1} \\ a_{1,0}b_{0,0} + a_{1,1}b_{1,0} & a_{1,0}b_{0,1} + a_{1,1}b_{1,1} \end{bmatrix}$

Matrices
00000

Dot Product

Cross Product

Matrix Code

- Math: C = A B
- Components: $c_{i,j} = \sum_{\alpha} a_{i,\alpha} b_{\alpha,j}$
- Code:

```
for(int i=0; i<N; ++i) {
  for(int j=0; j<M; ++j) {
    c[i][j] = 0;
    for(int α=0; α<K; α++) {
        c[i][j] = c[i][j] + a[i][α] * b[α][j];
      }
  }
}</pre>
```

Matrices 0000 Dot Product

Cross Product

Adjugate and Inverse

• Inverse:
$$A^{-1}A = AA^{-1} = I$$

• Determinant: |A|

•
$$|a| = a$$

• $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a|d| - b|c|$
• $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$

• Adjugate: $A^* = cof(A)^T$ (matrix of cofactors cof(A))

Sometimes called Adjoint or Adjunct

•
$$A^{-1} = \frac{A^*}{|A|}$$

Cross Product 00

Dot Product

- Also called inner product
 - $\vec{u} \bullet \vec{v}$ is a scalar
 - Commutitive: $\vec{u} \bullet \vec{v} = \vec{v} \bullet \vec{u}$
 - Distributive: $(a\vec{u}) \bullet \vec{v} = \vec{u} \bullet (a\vec{v}) = a(\vec{u} \bullet \vec{v})$
 - Associative: $(\vec{u} + \vec{v}) \bullet \vec{w} = \vec{u} \bullet \vec{w} + \vec{v} \bullet \vec{w}$

•
$$\vec{v} \bullet \vec{v} \ge 0$$

•
$$\vec{v} \bullet \vec{v} = 0 \leftrightarrow \vec{v} = \vec{0}$$

- Equivalent notations
 - Vector: $\vec{u} \bullet \vec{v}$
 - Matrix: $U^T V$

•
$$\sum_{\alpha} u_{\alpha} v_{\alpha}$$

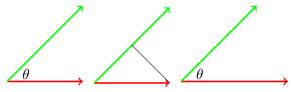
Cross Product

Dot Defines Length and Angle

•
$$\vec{v} \bullet \vec{v} = |\vec{v}|^2$$

• $\vec{u} \bullet \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$

- **Defines** angle θ !
- If $|\vec{v}| = 1$, gives projection of \vec{u} onto \vec{v}
- If $|\vec{u}| = |\vec{v}| = 1$, gives just $\cos \theta$



Cross Product 00

Orthogonal & Normal

- Orthogonal = perpendicular: $\vec{u} \bullet \vec{v} = 0$
- Normal (this usage) = unit-length: $\vec{u} \bullet \vec{u} = 1$
- Orthonormal: set of vectors both orthogonal and normal
- Orthogonal matrix: rows (& columns) orthonormal
 - For orthogonal matrices, $A^{-1} = A^T$

Matrices 00000 Dot Product 000 Cross Product

3D Cross Product

 $\vec{u} \times \vec{v}$

• length = area of parallelogram = twice area of triangle

$$|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin(\theta)$$

• direction = perpendicular to \vec{u} and \vec{v} (right hand rule)

•
$$\vec{w} = \vec{u} \times \vec{v} = \begin{vmatrix} \vec{l} & \vec{l} \\ \hat{j} & U & V \end{vmatrix}$$

•
$$\begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} u_1 v_2 - u_2 v_1 \\ u_2 v_0 - u_0 v_2 \\ u_0 v_1 - u_1 v_0 \end{bmatrix}$$

- Positive terms follow 012012 order
- Netative terms follow 210210 order

Cross Product

Building an Orthogonal Basis

Vectors \vec{u} , \vec{v} , \vec{w}

• Gram-Schmidt (any number of dimensions)

•
$$\vec{u'} = \vec{u}$$

• $\vec{v'} = \vec{v} - \hat{u'} (\vec{v} \cdot \hat{u'})$
• $\vec{v'} = \vec{v} - \frac{\vec{u'}}{|\vec{u'}|} (\vec{v} \cdot \frac{\vec{u'}}{|\vec{u'}|})$
• $\vec{v'} = \vec{v} - \vec{u'} \cdot \vec{v} \cdot \vec{u'} / |\vec{u'}|^2$
• $\vec{v'} = \vec{v} - \vec{u'} \cdot \vec{v} \cdot \vec{u'} / \vec{u'} \cdot \vec{u'}$
• $\vec{w'} = \vec{w} - \vec{u'} \cdot \vec{w} \cdot \vec{u'} / \vec{u'} \cdot \vec{u'} - \vec{v'} \cdot \vec{w} \cdot \vec{v'} / \vec{v'} \cdot \vec{v'}$

• Cross-product (3D only)

•
$$\vec{u'} = \vec{u}$$

• $\vec{w'} = \vec{u'} \times \vec{v}$
• $\vec{v'} = \vec{w'} \times \vec{u'}$