Common Transforms

Composing Transforms

Affine Transforms

Vectors and Normals

3D Transformations

CMSC 435/634

Common Transform

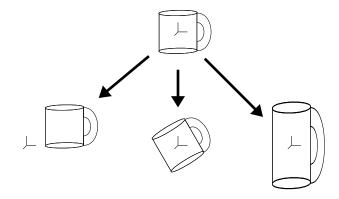
Composing Transforms

Affine Transforms

Vectors and Normals

Transformation

Webster: The operation of changing one configuration or expression into another in accordance with a mathematical rule



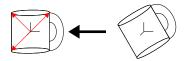
Common Transform

Composing Transform 0000 Affine Transforms

Vectors and Normals

Using Transformation

- · Points on object represented as vector offset from origin
- Transform is a vector to vector function
 - $\vec{p'} = f(\vec{p})$
- Relativity:
 - From $\vec{p'}$ point of view, object is transformed
 - From \vec{p} point of view, coordinate system changes
- Inverse transform, $\vec{p} = f^{-1}(\vec{p'})$



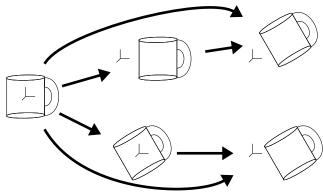
Common Transforr

Composing Transform 0000 Affine Transforms

Vectors and Normals

Composing Transforms

- Order matters
 - $R(T(\vec{p})) = R \circ T(\vec{p})$
 - $T(R(\vec{p})) = T \circ R(\vec{p})$



Common Transform

Composing Transforms

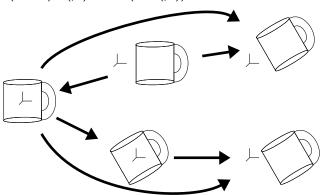
Affine Transforms

Vectors and Normals

Inverting Composed Transforms

Reverse order

• $(R \circ T)^{-1}(\vec{p'}) = T^{-1}(R^{-1}(\vec{p'}))$ • $(T \circ R)^{-1}(\vec{p'}) = R^{-1}(T^{-1}(\vec{p'}))$



 Common Transforms
 Common Transforms
 Composing Transforms
 Affine Transforms
 Vectors a

 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000</td

Translation

•
$$\vec{p'} = \vec{p} + \vec{t}$$

• $\begin{bmatrix} p'_x \\ p'_y \\ p'_z \end{bmatrix} = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} = \begin{bmatrix} p_x + t_x \\ p_y + t_y \\ p_z + t_z \end{bmatrix}$

• \vec{t} says where \vec{p} -space origin ends up $(\vec{p'} = \vec{0} + \vec{t})$

• Composition: $\vec{p'} = (\vec{p} + \vec{t_0}) + \vec{t_1} = \vec{p} + (\vec{t_0} + \vec{t_1})$

Common Transforms

Composing Transform

Affine Transforms

Vectors and Normals

Linear Transforms

•
$$\begin{bmatrix} p'_x \\ p'_y \\ p'_z \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

• Matrix says where \vec{p} -space axes end up

•
$$\begin{bmatrix} a \\ d \\ g \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} b \\ e \\ h \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} c \\ f \\ i \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
$$\bullet \text{ Composition: } \vec{p'} = M (N \vec{p}) = (M N)\vec{p}$$

Common Transforms

Composing Transforms

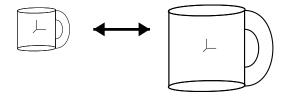
Affine Transforms

Vectors and Normals

Common case: Scaling

•
$$\begin{bmatrix} p'_x \\ p'_y \\ p'_z \end{bmatrix} = \begin{bmatrix} s_x & p_x \\ s_y & p_y \\ s_z & p_z \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & s_z \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

• Inverse: $\begin{bmatrix} 1/s_x & 0 & 0 \\ 0 & 1/s_y & 0 \\ 0 & 0 & 1/s_z \end{bmatrix}$



Common Transforms

Composing Transforms

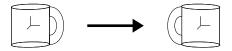
Affine Transforms

Vectors and Normals

Common case: Reflection

• Negative scaling

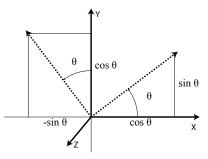
•
$$\begin{bmatrix} p'_x \\ p'_y \\ p'_z \end{bmatrix} = \begin{bmatrix} -p_x \\ p_y \\ p_z \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$



 Generic Transforms
 Common Transforms
 Composing Transforms
 Affine Transforms
 Vectors and Norm.

 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 <t

Common case: Rotation



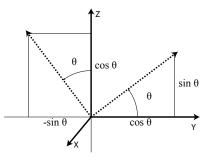
• Orthogonal, so $M^{-1} = M^T$

• Rotate around Z:
$$\vec{p'} = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} \vec{p}$$

 Generic Transforms
 Common Transforms
 Composing Transforms
 Affine Transforms
 Vectors and Norm

 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 00000
 <t

Common case: Rotation



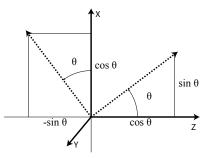
• Orthogonal, so $M^{-1} = M^T$

• Rotate around X:
$$\vec{p'} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \vec{p}$$

 Generic Transforms
 Common Transforms
 Composing Transforms
 Affine Transforms
 Vectors and Norm

 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 00000
 <t

Common case: Rotation



• Orthogonal, so $M^{-1} = M^T$

• Rotate around Y:
$$\vec{p'} = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \vec{p}$$

Common Transform

Composing Transforms

Affine Transforms

Vectors and Normals

Composing Transforms

- Scale by *s* along axis \vec{a}
 - Rotate to align \vec{a} with Z
 - Scale along Z
 - Rotate back

eric Transforms	Common Transforms	Composing Transforms	Affine Transforms	Vectors and Norma
0	00000	0000	0000	00

Rotate by α around X into XZ plane

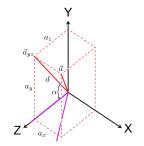
• Projection of
$$\vec{a}$$
 onto YZ: $\vec{a}_{yz} = \begin{bmatrix} 0 \\ a_y \\ a_z \end{bmatrix}$

• length
$$d = \sqrt{(a_y)^2 + (a_z)^2}$$

• So
$$\cos \alpha = a_z/d$$
, $\sin \alpha = a_y/d$

•
$$R_X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & a_z/d & -a_y/d \\ 0 & a_y/d & a_z/d \end{bmatrix}$$

• Result $\vec{a'} = \begin{bmatrix} a_x \\ 0 \\ d \end{bmatrix}$



Common Transform

Composing Transforms

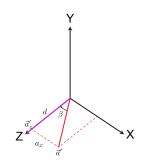
Affine Transforms

Vectors and Normals

Rotate by - β around Y to Z axis

•
$$\vec{a'} = \begin{bmatrix} a_x \\ 0 \\ d \end{bmatrix}$$

• length = 1
• So $\cos \beta = d$, $\sin \beta = a_x$
• $R_Y = \begin{bmatrix} d & 0 & -a_x \\ 0 & 1 & 0 \\ a_x & 0 & d \end{bmatrix}$
• Result $\vec{a'} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$



Common Transform

Composing Transforms

Affine Transforms

Vectors and Normals

Composing Transforms

• Scale by *s* along Z:
$$S_Z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s \end{bmatrix}$$

- Scale by *s* along axis \vec{a}
 - Rotate to align *ā* with Z
 - Scale along Z
 - Rotate back

•
$$\vec{p'} = R_X^{-1} R_Y^{-1} S_Z R_Y R_X \vec{p}$$

Common Transform

Composing Transform

Affine Transforms

Vectors and Normals

Affine Transforms

- Affine = Linear + Translation
- Composition? A $(B \ \vec{p} + \vec{t_0}) + \vec{t_1} = A \ B \ \vec{p} + A \ \vec{t_0} + \vec{t_1}$
- Yuck!

Common Transforr

Composing Transforms

Affine Transforms

Vectors and Normals

Homogeneous Coordinates

• Add a '1' to each point

•
$$\begin{bmatrix} p'_x \\ p'_y \\ p'_z \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

• $\vec{p'}_x = (a \ p_x + b \ p_y + c \ p_z) + t_x$
• $\vec{p'}_y = (d \ p_x + e \ p_y + f \ p_z) + t_y$
• $\vec{p'}_z = (g \ p_x + h \ p_y + i \ p_z) + t_z$
• $1 = (0p_x + 0p_y + 0p_z) + 1$

Common Transform

Composing Transforms

Affine Transforms

Vectors and Normals

Homogeneous Coordinates

•
$$\begin{bmatrix} p'_x \\ p'_y \\ p'_z \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

• $\vec{p'} = \begin{bmatrix} \vec{x} & \vec{y} & \vec{z} & \vec{t} \end{bmatrix} \vec{p}$
• \vec{t} says where the \vec{p} -space origin ends up

- \vec{x} , \vec{y} , \vec{z} say where the \vec{p} -space axes end up
- Composition: Just matrix multiplies!

Common Transform

Composing Transform

Affine Transforms

Vectors and Normals

Composing Transforms

- Rotate by θ about line between $\vec{p_0}$ and $\vec{p_1}$:
 - Translate \vec{p}_0 to origin
 - Rotate to align $ec{p_1} ec{p_0}$ with Z
 - Rotate by θ around Z
 - Undo $\vec{p_1} \vec{p_0}$ rotation
 - Undo translation
- $T^{-1}R_X^{-1}R_Y^{-1}R_Z(\theta)R_YR_XT$

 Generic Transforms
 Common Transforms
 Composing Transforms
 Affine Transforms
 Vectors and Normals

 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 <

Vectors

- Transform by Jacobian Matrix
- Matrix of partial derivatives

•
$$\begin{bmatrix} \vec{p'}_x \\ \vec{p'}_y \\ \vec{p'}_z \end{bmatrix} = \begin{bmatrix} a \ p_x + b \ p_y + c \ p_z + t_x \\ d \ p_x + e \ p_y + f \ p_z + t_y \\ g \ p_x + h \ p_y + i \ p_z + t_z \end{bmatrix}$$

•
$$J = \begin{bmatrix} \frac{\partial p'_x}{\partial p_x} & \frac{\partial p'_x}{\partial p_x} & \frac{\partial p'_x}{\partial p_y} & \frac{\partial p'_x}{\partial p_z} \\ \frac{\partial p'_y}{\partial p_x} & \frac{\partial p'_y}{\partial p_y} & \frac{\partial p'_y}{\partial p_z} \\ \frac{\partial p'_z}{\partial p_x} & \frac{\partial p'_z}{\partial p_z} & \frac{\partial p'_z}{\partial p_z} \end{bmatrix}$$

•
$$J = \begin{bmatrix} a \ b \ c \\ c \ d \ f \\ g \ h \ i \end{bmatrix}$$

• Upper-left 3x3

eneric Transforms	Common Transforms	Composing Transforms	Affine Transforms	Vectors and Normals
000	00000	0000	0000	0•

Normals

Normal should remain perpendicular to tangent vector

•
$$\vec{n} \cdot \vec{v} = \vec{n'} \cdot \vec{v'} = 0$$

• $\begin{bmatrix} n_x & n_y & n_z \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = (\begin{bmatrix} n_x & n_y & n_z \end{bmatrix} J^{-1}) \begin{pmatrix} J \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}) = 0$
• $\vec{n'} = \vec{n} J^{-1}$

- Multiply by inverse on right
- OR multiply column normal by inverse transpose
 - $(J^{-1})^T = J$ if J is orthogonal (only rotations)