Rendering Equation

BRDFs 00000 Interpolation 00

Reflectance and Illumination

CMSC 435/634

Interpolation 00

Illumination

- Effect of light on objects
- Mostly look just at intensity
 - Apply to each color channel independently
- Good for most objects
 - Not fluorescent
 - Not phosphorescent

Interpolation 00

Local vs. Global

- Local
 - Light sources shining directly on object
- Global
 - · Lights bouncing from objects onto other objects
 - Ambient Illumination
 - Approximate global illumination as constant color
 - Typically $\sim 1\%$ of direct illumination

BRDFs

Interpolation 00

BRDF

Bidirectional Reflectance Distribution Function How much light reflects from L_i to L_o

Interpolation 00

Physically Plausible BRDF

- Positive
- Reciprocity
 - Same light from L_i to L_o as from L_o to L_i
- Conservation of Energy
 - Don't reflect more energy than comes in

BRDFs

Interpolation 00

Plotting BRDFs

- Polar plot of reflectance strength
 - For one view direction, showing light directions
 - For one light direction, showing view directions
- Reciprocity same if you swap view and light

Rendering Equation

BRDFs 00000 Interpolation 00

Rendering Equation

Integral of all Incoming Light

$$L_o(\hat{v}) = \int_{\Omega(\hat{n})} L_i(\hat{l}) f_r(\hat{v}, \hat{l}) \, \hat{n} \cdot \hat{l} \, d\omega(\hat{l})$$

Parts of this equation:

 $\begin{array}{lll} L_o(\hat{v}) & \text{outgoing light in direction } \hat{v} \\ \Omega(\hat{n}) & \text{hemisphere above } \hat{n} \text{ that can see this point} \\ L_i(\hat{l}) & \text{incoming light from direction } \hat{l} \\ f_r(\hat{v}, \hat{l}) & \text{BRDF from } \hat{l} \text{ to } \hat{v} \\ \hat{n} \cdot \hat{l} d\omega(\hat{l}) & \text{projection of differential solid angle onto surface} \end{array}$

Rendering Equation for Point Lights

Sum for Each Light

$$L_o(\hat{v}) = \sum_i L_i f_r(\hat{v}, \hat{l}_i) \hat{n} \cdot \hat{l}_i$$

Parts of this equation:

 $\begin{array}{ll} L_o(\hat{v}) & \text{outgoing light in direction } \hat{v} \\ i & \text{lights that can see this point (where } \hat{n} \cdot \hat{l}_i > 0) \\ \hat{l}_i & \text{light direction to light } i \\ L_i & \text{incoming light for light } i \\ f_r(\hat{v}, \hat{l}) & \text{BRDF from } \hat{l}_i \text{ to } \hat{v} \end{array}$

Rendering Equation

BRDFs

Interpolation 00

Results

- Integrating full environment
- Light at one point, black elsewhere

Interpolation 00

Decomposing BRDFs

- Decompose BRDF into convenient parts
- Typical breakdown:
 - Diffuse (view independent)
 - Specular (view dependent near reflection)
 - Others less common, often ignored (e.g. retro reflection)

Rendering Equation

BRDFs

Interpolation

Important directions

Rendering Equation

BRDFs

Interpolation 00

Important directions

 \hat{v} : Unit vector from surface toward viewer

Rendering Equation

BRDFs 00000 Interpolation 00

Important directions

 \hat{l} : Unit vector from surface toward light

Rendering Equation

BRDFs

Interpolation 00

Important directions

Rendering Equation

BRDFs 00000 Interpolation 00

Important directions

 $\hat{R}_l = 2\hat{n}(\hat{n} \cdot \hat{l}) - \hat{l}$: Direction of mirror reflection of light \hat{n} \hat{R}_l

Rendering Equation

BRDFs

Interpolation 00

Important directions

 $\hat{h} = (\hat{v} + \hat{l})/|\hat{v} + \hat{l}|$: Normal direction that would reflect \hat{v} to \hat{l}

Interpolation 00

Diffuse

- Also called Lambertian or Matte
- Total reflectance: $\sum_{i} L_{i} K d \hat{n} \cdot \hat{l}_{i}$
- BRDF: Kd

Phong

- Strongest where \hat{R}_l lines up with \hat{v} or \hat{R}_v lines up with \hat{l}
- Total reflectance: $\sum_{i} L_{i} Ks (\hat{R}_{v} \cdot \hat{l}_{i})^{e}$
- Physically plausible version: $\sum_{i} L_{i} Ks (\hat{R}_{v} \cdot \hat{l}_{i})^{e} \hat{n} \cdot \hat{l}$
 - With energy-conserving Ks(e)

endering Equation

BRDFs 00000 Interpolation 00

Specular Microfacets

- Imagine random mirrored *microfacets*
- Normal Distribution Function (NDF)
 - Probability facet has normal \hat{h}
 - Only facets to reflect \hat{l} to \hat{v}
- Proportion of light or view blocked (geometry term)
 - Blocked light = *shadowing*
 - Blocked view = masking
- Fresnel term
 - Reflection from non-metals is stronger at glancing angles

Cook-Torrance

- Beckmann Distribution = Gaussian distribution of slope
- Shadow/Mask based on symmetric V-shaped microfacets
- BRDF: $D(\hat{n}, \hat{h}) \frac{G(\hat{n}, \hat{v}, \hat{l})}{4 \hat{n} \cdot \hat{v} \hat{n} \cdot \hat{l}} F(\hat{v}, \hat{l}),$
- Total reflectance: $\sum_{i} L_{i} D(\hat{n}, \hat{h}_{i}) \frac{G(\hat{n}, \hat{v}, \hat{l}_{i})}{4 \hat{n} \cdot \hat{v} \hat{n} \cdot \hat{l}} F(\hat{v}, \hat{l}_{i}) \hat{n} \cdot \hat{l}$

Interpolation

Blinn-Phong

- Alternate formulation for Phong, similar behavior
- Strongest where \hat{h} lines up with \hat{n}
 - Function of \hat{h} , behaves like NDF
- Total reflectance (original form): $\sum_{i} L_i Ks (\hat{n} \cdot \hat{h}_i)^e$
- As NDF: $D(\hat{n}, \hat{h}_i) = \frac{e+2}{2\pi} (\hat{n} \cdot \hat{h}_i)^e$
- Reflectance: $\sum_{i} L_{i} \frac{e+2}{2\pi} (\hat{n} \cdot \hat{h}_{i})^{e} \hat{n} \cdot \hat{l}$

BRDFs

Interpolation •O

When to Compute

- Gouraud Shading = Compute per-vertex & interpolate
 - Lose sharp highlights
 - Subject to Mach banding
- Phong Shading = Interpolate normals & compute per-pixel

Gouraud

Phong

Interpolation O

Phong Shading

- Phong shading can refer to lighting model **or** interpolation
- To save confusion:
 - Phong lighting
 - Phong interpolation