[Illumination](#page-1-0) 1986 - The [Rendering Equation](#page-3-0) 1986 - Rendering [BRDFs](#page-16-0) 1986 - [Interpolation](#page-21-0) 1986 - Interpolation 1

Many proposal propo

Reflectance and Illumination

CMSC 435/634

Illumination

- Effect of light on objects
- Mostly look just at intensity
	- Apply to each color channel independently
- Good for most objects
	- Not fluorescent
	- Not phosphorescent

Local vs. Global

- Local
	- Light sources shining directly on object
- Global
	- Lights bouncing from objects onto other objects
	- Ambient Illumination
		- Approximate global illumination as constant color
		- Typically $\sim 1\%$ of direct illumination

BRDF

Bidirectional Reflectance Distribution Function How much light reflects from L_i to L_o

 \circ

Physically Plausible BRDF

- Positive
- Reciprocity
	- Same light from L_i to L_o as from L_o to L_i
- Conservation of Energy
	- Don't reflect more energy than comes in

 \circ

Plotting BRDFs

- Polar plot of reflectance strength
	- For one view direction, showing light directions
	- For one light direction, showing view directions
- Reciprocity same if you swap view and light

 \circ

Rendering Equation

Integral of all Incoming Light

$$
L_o(\hat{v}) = \int_{\Omega(\hat{n})} L_i(\hat{l}) f_r(\hat{v}, \hat{l}) \hat{n} \cdot \hat{l} d\omega(\hat{l})
$$

Parts of this equation:

 $L_o(\hat{v})$ outgoing light in direction \hat{v} $\Omega(\hat{n})$ hemisphere above \hat{n} that can see this point $L_i(\hat{l})$ incoming light from direction \hat{l} $f_r(\hat{v}, \hat{l})$ BRDF from \hat{l} to \hat{v} $\hat{n} \cdot \hat{l} d\omega(\hat{l})$ ˆ) projection of differential solid angle onto surface

Rendering Equation for Point Lights

Sum for Each Light

$$
L_o(\hat{v}) = \sum_i L_i f_r(\hat{v}, \hat{l}_i) \hat{n} \cdot \hat{l}_i
$$

Parts of this equation:

 $L_{\rho}(\hat{v})$ outgoing light in direction \hat{v} *i* lights that can see this point (where $\hat{n} \cdot \hat{l}_i > 0$) \hat{l}_i light direction to light i L_i incoming light for light i $f_r(\hat{v}, \hat{l})$ BRDF from \hat{l}_i to \hat{v}

[Illumination](#page-1-0) **[Rendering Equation](#page-3-0)** [BRDFs](#page-16-0) [Interpolation](#page-21-0) **Rendering Equation** BRDFs Interpolation **Interpolation**
 00000

Results

- Integrating full environment
- Light at one point, black elsewhere

 \circ

Decomposing BRDFs

- Decompose BRDF into convenient parts
- Typical breakdown:
	- Diffuse (view independent)
	- Specular (view dependent near reflection)
	- Others less common, often ignored (e.g. retro reflection)

[Illumination](#page-1-0) **[Rendering Equation](#page-3-0)** [BRDFs](#page-16-0) [Interpolation](#page-21-0) **Rendering Equation** BRDFs Interpolation **Interpolation** oo

Important directions

Important directions

 \hat{v} : Unit vector from surface toward viewer

Important directions

 \hat{l} : Unit vector from surface toward light

Important directions

Important directions

 $\hat{R}_l = 2\hat{n}(\hat{n}\cdot\hat{l}) - \hat{l}$: Direction of mirror reflection of light $\hat n$ \hat{R}_l

Important directions

 $\hat{h} = (\hat{v} + \hat{l})/|\hat{v} + \hat{l}|$: Normal direction that would reflect \hat{v} to \hat{l}

Diffuse

- Also called Lambertian or Matte
- \bullet Total reflectance: $\sum_i L_i \mathop{Kd} \hat{n} \cdot \hat{l_i}$
- BRDF: Kd

Phong

- \bullet Strongest where \hat{R}_{l} lines up with \hat{V} or \hat{R}_{v} lines up with \hat{l}
- \bullet Total reflectance: $\sum_i \mathcal{L}_i$ Ks $(\hat{R_{\mathsf{v}}}\cdot \hat{l}_i)^{\mathsf{e}}$
- \bullet Physically plausible version: $\sum_i L_i$ Ks $(\hat{R_v} \cdot \hat{l_i})^e$ $\hat{n} \cdot \hat{l}$
	- With energy-conserving $Ks(e)$

 \circ

Specular Microfacets

- Imagine random mirrored *microfacets*
- Normal Distribution Function (NDF)
	- Probability facet has normal \hat{h}
	- Only facets to reflect \hat{l} to \hat{v}
- Proportion of light or view blocked (geometry term)
	- Blocked light $=$ shadowing
	- Blocked view $=$ masking
- Fresnel term
	- Reflection from non-metals is stronger at glancing angles

Cook-Torrance

- B eckmann Distribution $=$ Gaussian distribution of slope
- Shadow/Mask based on symmetric V-shaped microfacets
- BRDF: $D(\hat{n}, \hat{h}) \frac{G(\hat{n}, \hat{v}, \hat{l})}{4 \hat{n} \hat{v} \hat{n} \hat{l}}$ $\frac{G(\hat{n},\hat{v},l)}{4\,\hat{n}\cdot\hat{v}\,\hat{n}\cdot\hat{l}}F(\hat{v},\hat{l}),$
- Total reflectance: $\sum_i L_i\, D(\hat n, \hat h_i) \frac{G(\hat n, \hat v, \hat l_i)}{4\,\hat n\cdot \hat v\,\hat n\cdot \hat l}$ $\frac{G(\hat{n},\hat{v},l_i)}{4\;\hat{n}\cdot\hat{v}\;\hat{n}\cdot\hat{l}}F(\hat{v},\hat{l}_i)\;\hat{n}\cdot\hat{l}$

 \circ

Blinn-Phong

- Alternate formulation for Phong, similar behavior
- Strongest where \hat{h} lines up with \hat{n}
	- Function of \hat{h} , behaves like NDF
- \bullet Total reflectance (original form): $\sum_i L_i\mathop{\mathcal{K}}\nolimits_S(\hat{n}\cdot\hat{h_i})^e$
- As NDF: $D(\hat{n}, \hat{h}_i) = \frac{e+2}{2\pi} (\hat{n} \cdot \hat{h}_i)^e$
- Reflectance: $\sum_i L_i \frac{e+2}{2\pi}$ $\frac{2+2}{2\pi}(\hat{n}\cdot\hat{h}_i)$ ^e $\hat{n}\cdot\hat{l}$

 \bullet

When to Compute

- Gouraud Shading $=$ Compute per-vertex $\&$ interpolate
	- Lose sharp highlights
	- Subject to Mach banding
- Phong Shading $=$ Interpolate normals & compute per-pixel

Phong Shading

- Phong shading can refer to lighting model or interpolation
- To save confusion:
	- Phong lighting
	- Phong interpolation