◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3D Transformations

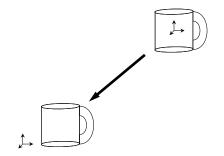
CMSC 435/634

Transformation

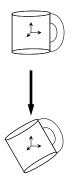
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Transformation



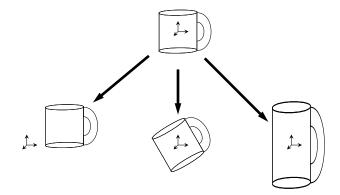
Transformation



イロト 不得 トイヨト イヨト

э

Transformation



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Using Transformation

· Points on object represented as vector offset from origin

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Using Transformation

· Points on object represented as vector offset from origin

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

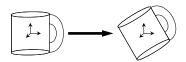
Using Transformation

· Points on object represented as vector offset from origin

Using Transformation

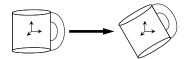
- · Points on object represented as vector offset from origin
- Transform is a vector to vector function

•
$$\vec{p}' = f(\vec{p})$$



Using Transformation

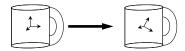
- · Points on object represented as vector offset from origin
- Transform is a vector to vector function
 - $\vec{p}' = f(\vec{p})$
- Relativity:
 - From \vec{p}' point of view, object is transformed



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④�?

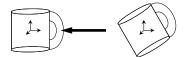
Using Transformation

- · Points on object represented as vector offset from origin
- Transform is a vector to vector function
 - $\vec{p}' = f(\vec{p})$
- Relativity:
 - From \vec{p}' point of view, object is transformed
 - From \vec{p} point of view, coordinate system changes



Using Transformation

- · Points on object represented as vector offset from origin
- Transform is a vector to vector function
 - $\vec{p}' = f(\vec{p})$
- Relativity:
 - From \vec{p}' point of view, object is transformed
 - From \vec{p} point of view, coordinate system changes
- Inverse transform, $\vec{p} = f^{-1}(\vec{p}')$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Composing Transforms

• Order matters

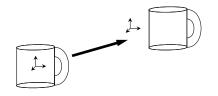
Affine Transforms

Vectors and Normals

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Composing Transforms

- Order matters
 - $T(\vec{p})$



Generic Transforms

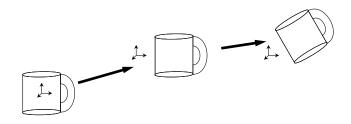
▲ロト ▲圖ト ▲温ト ▲温ト

æ

Vectors and Normals

Composing Transforms

- Order matters
 - $R(T(\vec{p}))$



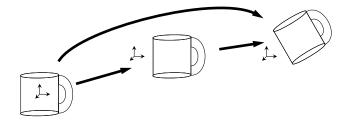
Generic Transforms

Vectors and Normals

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Composing Transforms

- Order matters
 - $R(T(\vec{p})) = R \circ T(\vec{p})$



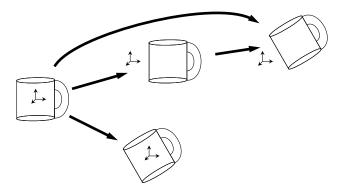
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Composing Transforms

• Order matters

•
$$R(T(\vec{p})) = R \circ T(\vec{p})$$

• $R(\vec{p})$

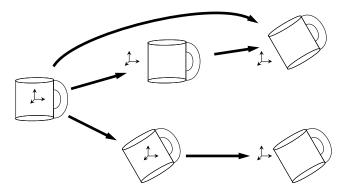


Generic Transforms

Vectors and Normals

Composing Transforms

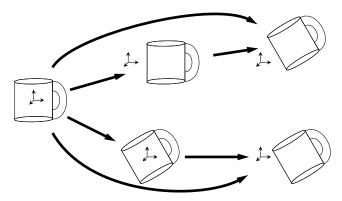
- Order matters
 - $R(T(\vec{p})) = R \circ T(\vec{p})$
 - $T(R(\vec{p}))$



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Composing Transforms

- Order matters
 - $R(T(\vec{p})) = R \circ T(\vec{p})$
 - $T(R(\vec{p})) = T \circ R(\vec{p})$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

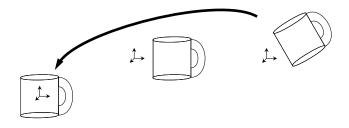
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Inverting Composed Transforms

• Reverse order

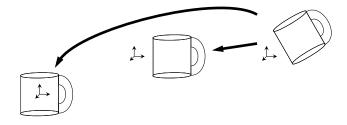
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

- Reverse order
 - $(R \circ T)^{-1}(\vec{p}')$



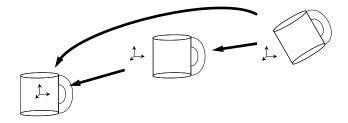
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Reverse order
 - $(R \circ T)^{-1}(\vec{p}') = R^{-1}(\vec{p}')$



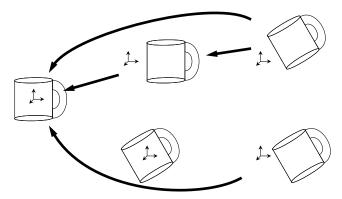
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Reverse order
 - $(R \circ T)^{-1}(\vec{p}') = T^{-1}(R^{-1}(\vec{p}'))$



Inverting Composed Transforms

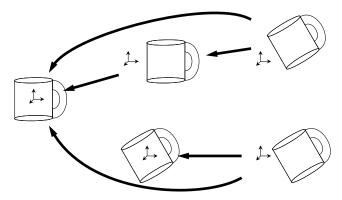
- Reverse order
 - $(R \circ T)^{-1}(\vec{p}') = T^{-1}(R^{-1}(\vec{p}'))$
 - $(T \circ R)^{-1}(\vec{p}')$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

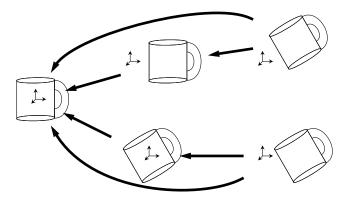
▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Reverse order
 - $(R \circ T)^{-1}(\vec{p}') = T^{-1}(R^{-1}(\vec{p}'))$ $(T \circ R)^{-1}(\vec{p}') = T^{-1}(\vec{p}')$



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Reverse order
 - $(R \circ T)^{-1}(\vec{p}') = T^{-1}(R^{-1}(\vec{p}'))$
 - $(T \circ R)^{-1}(\vec{p}') = R^{-1}(T^{-1}(\vec{p}'))$

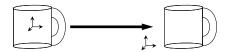


Affine Transforms

Vectors and Normals

Translation

• $\vec{p}' = \vec{p} + \vec{t}$



イロト イ理ト イヨト イヨト

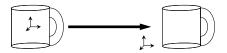
æ

Vectors and Normals

Translation

•
$$\vec{p}' = \vec{p} + \vec{t}$$

• $\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \end{bmatrix} = \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \end{bmatrix} + \begin{bmatrix} t^{x} \\ t^{y} \\ t^{z} \end{bmatrix} = \begin{bmatrix} p^{x} + t^{x} \\ p^{y} + t^{y} \\ p^{z} + t^{z} \end{bmatrix}$



イロト イ理ト イヨト イヨト

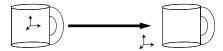
₹ 9Q@

Translation

•
$$\vec{p}' = \vec{p} + \vec{t}$$

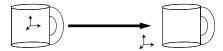
• $\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \end{bmatrix} = \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \end{bmatrix} + \begin{bmatrix} t^{x} \\ t^{y} \\ t^{z} \end{bmatrix} = \begin{bmatrix} p^{x} + t^{x} \\ p^{y} + t^{y} \\ p^{z} + t^{z} \end{bmatrix}$

• \vec{t} says where \vec{p} -space origin ends up $(\vec{p}' = \vec{0} + \vec{t})$



Translation

- $\vec{p}' = \vec{p} + \vec{t}$ • $\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \end{bmatrix} = \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \end{bmatrix} + \begin{bmatrix} t^{x} \\ t^{y} \\ t^{z} \end{bmatrix} = \begin{bmatrix} p^{x} + t^{x} \\ p^{y} + t^{y} \\ p^{z} + t^{z} \end{bmatrix}$
- \vec{t} says where \vec{p} -space origin ends up $(\vec{p}' = \vec{0} + \vec{t})$
- Composition: $\vec{p}' = (\vec{p} + \vec{t_0}) + \vec{t_1} = \vec{p} + (\vec{t_0} + \vec{t_1})$



Linear Transforms

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \end{bmatrix}$$

Linear Transforms

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Linear Transforms

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \end{bmatrix}$$

•
$$\begin{bmatrix} a \\ d \\ g \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Linear Transforms

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \end{bmatrix}$$

•
$$\begin{bmatrix} b \\ e \\ h \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Linear Transforms

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \end{bmatrix}$$

•
$$\begin{bmatrix} c \\ f \\ i \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Linear Transforms

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \end{bmatrix}$$

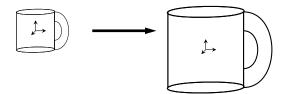
• Matrix says where \vec{p} -space axes end up

•
$$\begin{bmatrix} c \\ f \\ i \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

• Composition: $\vec{p}' = M (N \vec{p}) = (M N)\vec{p}$

Common case: Scaling

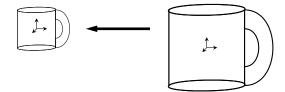
•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \end{bmatrix} = \begin{bmatrix} s_{x} p^{x} \\ s_{y} p^{y} \\ s_{z} p^{z} \end{bmatrix} = \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & s_{z} \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \end{bmatrix}$$



Common case: Scaling

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \end{bmatrix} = \begin{bmatrix} s_{x} p^{x} \\ s_{y} p^{y} \\ s_{z} p^{z} \end{bmatrix} = \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & s_{z} \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \end{bmatrix}$$

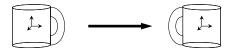
• Inverse: $\begin{bmatrix} 1/s_{x} & 0 & 0 \\ 0 & 1/s_{y} & 0 \\ 0 & 0 & 1/s_{z} \end{bmatrix}$



▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

Common case: Reflection

• Negative scaling

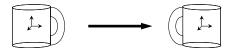


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

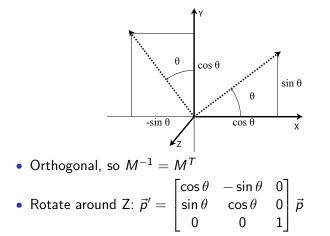
Common case: Reflection

• Negative scaling

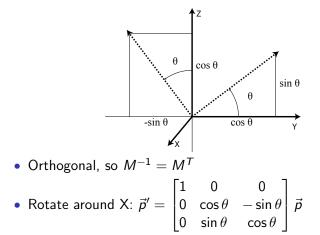
•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \end{bmatrix} = \begin{bmatrix} -p^{x} \\ p^{y} \\ p^{z} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \end{bmatrix}$$



Common case: Rotation



Common case: Rotation



Common case: Rotation



Composing Transforms

• Scale by s along axis \vec{a}

- Scale by s along axis \vec{a}
 - Rotate to align \vec{a} with Z

- Scale by s along axis \vec{a}
 - Rotate to align \vec{a} with Z
 - Scale along Z

Vectors and Normals

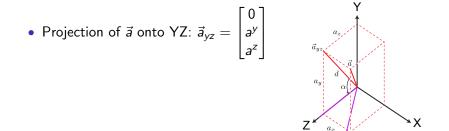
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Scale by s along axis \vec{a}
 - Rotate to align \vec{a} with Z
 - Scale along Z
 - Rotate back

ヘロン 人間 とくほとう ほとう

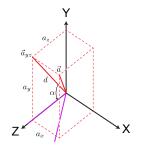
э

Rotate by α around X into XZ plane



Rotate by α around X into XZ plane

- Projection of \vec{a} onto YZ: $\vec{a}_{yz} = \begin{bmatrix} 0 \\ a^y \\ a^z \end{bmatrix}$
- length $d = \sqrt{(a^y)^2 + (a^z)^2}$

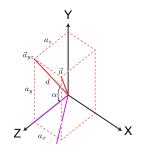


イロト 不得 トイヨト イヨト

э

Rotate by α around X into XZ plane

- Projection of \vec{a} onto YZ: $\vec{a}_{yz} = \begin{vmatrix} \vec{a}^{y} \\ a^{z} \end{vmatrix}$
- length $d = \sqrt{(a^y)^2 + (a^z)^2}$
- So $\cos \alpha = a^z/d$, $\sin \alpha = a^y/d$



(日)、

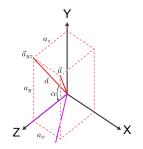
Rotate by α around X into XZ plane

• Projection of
$$\vec{a}$$
 onto YZ: $\vec{a}_{yz} = \begin{bmatrix} 0 \\ a^y \\ a^z \end{bmatrix}$

• length
$$d = \sqrt{(a^y)^2 + (a^z)^2}$$

• So
$$\cos \alpha = a^z/d$$
, $\sin \alpha = a^y/d$

•
$$R_X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & a^z/d & -a^y/d \\ 0 & a^y/d & a^z/d \end{bmatrix}$$



▲ロト ▲圖ト ▲温ト ▲温ト

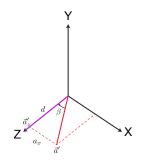
æ

×X

Rotate by α around X into XZ plane

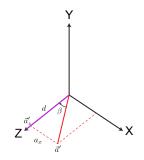
• Projection of
$$\vec{a}$$
 onto YZ: $\vec{a}_{yz} = \begin{bmatrix} 0\\ a^{y}\\ a^{z} \end{bmatrix}$
• length $d = \sqrt{(a^{y})^{2} + (a^{z})^{2}}$
• So $\cos \alpha = a^{z}/d$, $\sin \alpha = a^{y}/d$
• $R_{X} = \begin{bmatrix} 1 & 0 & 0\\ 0 & a^{z}/d & -a^{y}/d\\ 0 & a^{y}/d & a^{z}/d \end{bmatrix}$
• Result $\vec{a}' = \begin{bmatrix} a^{x}\\ 0\\ d \end{bmatrix}$

•
$$\vec{a}' = \begin{bmatrix} a^x \\ 0 \\ d \end{bmatrix}$$



•
$$\vec{a}' = \begin{bmatrix} a^x \\ 0 \\ d \end{bmatrix}$$

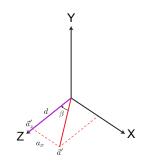
• length = 1



•
$$\vec{a}' = \begin{bmatrix} a^x \\ 0 \\ d \end{bmatrix}$$

• length = 1

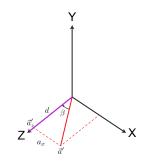
• So
$$\cos \beta = d$$
, $\sin \beta = a^{x}$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

•
$$\vec{a}' = \begin{bmatrix} a^{x} \\ 0 \\ d \end{bmatrix}$$

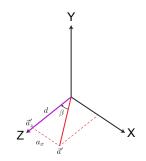
• length = 1
• So $\cos \beta = d$, $\sin \beta = a^{x}$
• $R_{Y} = \begin{bmatrix} d & 0 & -a^{x} \\ 0 & 1 & 0 \\ a^{x} & 0 & d \end{bmatrix}$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

•
$$\vec{a}' = \begin{bmatrix} a^{x} \\ 0 \\ d \end{bmatrix}$$

• length = 1
• So $\cos \beta = d$, $\sin \beta = a^{x}$
• $R_{Y} = \begin{bmatrix} d & 0 & -a^{x} \\ 0 & 1 & 0 \\ a^{x} & 0 & d \end{bmatrix}$
• Result $\vec{a}'' = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Scale by *s* along Z:
$$S_Z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Composing Transforms

• Scale by *s* along Z:
$$S_Z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s \end{bmatrix}$$

- Scale by s along axis \vec{a}
 - Rotate to align \vec{a} with Z

• $R_Y R_X \vec{p}$

• Scale by *s* along Z:
$$S_Z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s \end{bmatrix}$$

- Scale by s along axis \vec{a}
 - Rotate to align \vec{a} with Z
 - Scale along Z
 - $S_Z R_Y R_X \vec{p}$

• Scale by *s* along Z:
$$S_Z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s \end{bmatrix}$$

- Scale by s along axis \vec{a}
 - Rotate to align \vec{a} with Z
 - Scale along Z
 - Rotate back
 - $\vec{p}' = R_X^{-1} R_Y^{-1} S_Z R_Y R_X \vec{p}$

Affine Transforms

• Affine = Linear + Translation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Affine Transforms

- Affine = Linear + Translation
- Composition? A $(B \ \vec{p} + \vec{t_0}) + \vec{t_1} = A \ B \ \vec{p} + A \ \vec{t_0} + \vec{t_1}$
- Yuck!

Homogeneous Coordinates

Homogeneous Coordinates

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t^{x} \\ d & e & f & t^{y} \\ \frac{g & h & i & t^{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \\ 1 \end{bmatrix}$$

Homogeneous Coordinates

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t^{x} \\ d & e & f & t^{y} \\ \frac{g & h & i & t^{z}}{0 & 0 & 0 & 1} \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \\ 1 \end{bmatrix}$$

• $\vec{p}'^{x} = (a \ p^{x} + b \ p^{y} + c \ p^{z}) + t^{x}$

Homogeneous Coordinates

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t^{x} \\ d & e & f & t^{y} \\ \hline \frac{g & h & i & t^{z}}{0 & 0 & 0 & 1} \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \\ 1 \end{bmatrix}$$

•
$$\vec{p}'^{x} = (a \ p^{x} + b \ p^{y} + c \ p^{z}) + t^{x}$$

•
$$\vec{p}'^{y} = (d \ p^{x} + e \ p^{y} + f \ p^{z}) + t^{y}$$

Homogeneous Coordinates

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t^{x} \\ d & e & f & t^{y} \\ \hline g & h & i & t^{z} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \\ 1 \end{bmatrix}$$

•
$$\vec{p}'^x = (a \ p^x + b \ p^y + c \ p^z) + t^x$$

•
$$\vec{p}'^{y} = (d \ p^{x} + e \ p^{y} + f \ p^{z}) + t^{y}$$

•
$$\vec{p}'^{z} = (g \ p^{x} + h \ p^{y} + i \ p^{z}) + t^{z}$$

Homogeneous Coordinates

• Add a '1' to each point

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t^{x} \\ d & e & f & t^{y} \\ \underline{g & h & i & t^{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \\ 1 \end{bmatrix}$$

•
$$\vec{p}'^{x} = (a \ p^{x} + b \ p^{y} + c \ p^{z}) + t^{x}$$

•
$$\vec{p}'^{y} = (d \ p^{x} + e \ p^{y} + f \ p^{z}) + t^{y}$$

•
$$\vec{p}'^{z} = (g \ p^{x} + h \ p^{y} + i \ p^{z}) + t^{z}$$

•
$$1 = (0p^x + 0p^y + 0p^z) + 1$$

▲□▶▲圖▶★≧▶★≧▶ 差 のへぐ

Homogeneous Coordinates

• $\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t^{x} \\ d & e & f & t^{y} \\ g & h & i & t^{z} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \\ 1 \end{bmatrix}$

Homogeneous Coordinates

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t^{x} \\ d & e & f & t^{y} \\ \frac{g & h & i & t^{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \\ 1 \end{bmatrix}$$

• $\vec{p}' = \begin{bmatrix} \vec{x} & \vec{y} & \vec{z} & | \vec{t} \end{bmatrix} \vec{p}$

Homogeneous Coordinates

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t^{x} \\ d & e & f & t^{y} \\ g & h & i & t^{z} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \\ 1 \end{bmatrix}$$

• $\vec{p}' = \begin{bmatrix} \vec{x} & \vec{y} & \vec{z} & | \vec{t} \end{bmatrix} \vec{p}$
• \vec{t} says where the \vec{p} -space origin ends up

Homogeneous Coordinates

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t^{x} \\ d & e & f & t^{y} \\ \frac{g & h & i & t^{z}}{0 & 0 & 0 & 1} \end{bmatrix} \begin{bmatrix} p^{x^{-1}} \\ p^{y} \\ p^{z} \\ 1 \end{bmatrix}$$

• $\vec{p}' = \begin{bmatrix} \vec{x} & \vec{y} & \vec{z} & | \vec{t} \end{bmatrix} \vec{p}$

- \vec{t} says where the \vec{p} -space origin ends up
- \vec{x} , \vec{y} , \vec{z} say where the \vec{p} -space axes end up

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Homogeneous Coordinates

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t^{x} \\ d & e & f & t^{y} \\ \frac{g & h & i & t^{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p^{x^{-}} \\ p^{y} \\ p^{z} \\ 1 \end{bmatrix}$$

• $\vec{p}' = \begin{bmatrix} \vec{x} & \vec{y} & \vec{z} & | \vec{t} \end{bmatrix} \vec{p}$

- \vec{t} says where the \vec{p} -space origin ends up
- \vec{x} , \vec{y} , \vec{z} say where the \vec{p} -space axes end up
- Composition: Just matrix multiplies!

Composing Transforms

• Rotate by θ about line between \vec{p}_0 and \vec{p}_1 :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Composing Transforms

Т

- Rotate by θ about line between \vec{p}_0 and \vec{p}_1 :
 - Translate \vec{p}_0 to origin

Composing Transforms

- Rotate by θ about line between \vec{p}_0 and \vec{p}_1 :
 - Translate \vec{p}_0 to origin
 - Rotate to align $\vec{p}_1 \vec{p_0}$ with Z

$R_Y R_X T$

Composing Transforms

- Rotate by θ about line between \vec{p}_0 and \vec{p}_1 :
 - Translate \vec{p}_0 to origin
 - Rotate to align $\vec{p}_1 \vec{p_0}$ with Z
 - Rotate by θ around Z

• $R_Z(\theta)R_YR_XT$

Composing Transforms

- Rotate by θ about line between \vec{p}_0 and \vec{p}_1 :
 - Translate \vec{p}_0 to origin
 - Rotate to align $\vec{p}_1 \vec{p_0}$ with Z
 - Rotate by θ around Z
 - Undo $\vec{p}_1 \vec{p_0}$ rotation

• $R_X^{-1}R_Y^{-1}R_Z(\theta)R_YR_XT$

Composing Transforms

- Rotate by θ about line between \vec{p}_0 and \vec{p}_1 :
 - Translate \vec{p}_0 to origin
 - Rotate to align $\vec{p}_1 \vec{p_0}$ with Z
 - Rotate by θ around Z
 - Undo $\vec{p}_1 \vec{p_0}$ rotation
 - Undo translation
- $T^{-1}R_X^{-1}R_Y^{-1}R_Z(\theta)R_YR_XT$

Vectors

• Transform by Jacobian Matrix

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Transform by Jacobian Matrix
- Matrix of partial derivatives

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Transform by Jacobian Matrix
- Matrix of partial derivatives

•
$$\begin{bmatrix} \vec{p}^{\prime x} \\ \vec{p}^{\prime y} \\ \vec{p}^{\prime z} \end{bmatrix} = \begin{bmatrix} a \ p^{x} + b \ p^{y} + c \ p^{z} + t^{x} \\ d \ p^{x} + e \ p^{y} + f \ p^{z} + t^{y} \\ g \ p^{x} + h \ p^{y} + i \ p^{z} + t^{z} \end{bmatrix}$$

- Transform by Jacobian Matrix
- Matrix of partial derivatives

•
$$\begin{bmatrix} \vec{p}'^{x} \\ \vec{p}'^{y} \\ \vec{p}'^{z} \end{bmatrix} = \begin{bmatrix} a \ p^{x} + b \ p^{y} + c \ p^{z} + t^{x} \\ d \ p^{x} + e \ p^{y} + f \ p^{z} + t^{y} \\ g \ p^{x} + h \ p^{y} + i \ p^{z} + t^{z} \end{bmatrix}$$

•
$$J = \begin{bmatrix} \frac{\partial p'^{x}}{\partial p^{x}} & \frac{\partial p'^{x}}{\partial p^{x}} & \frac{\partial p'^{y}}{\partial p^{y}} & \frac{\partial p'^{x}}{\partial p^{y}} \\ \frac{\partial p'^{y}}{\partial p^{x}} & \frac{\partial p'^{y}}{\partial p^{y}} & \frac{\partial p'^{y}}{\partial p^{y}} \\ \frac{\partial p'^{z}}{\partial p^{x}} & \frac{\partial p'^{z}}{\partial p^{y}} & \frac{\partial p'^{z}}{\partial p^{y}} \end{bmatrix}$$

- Transform by Jacobian Matrix
- Matrix of partial derivatives

•
$$\begin{bmatrix} \vec{p}'^{x} \\ \vec{p}'^{y} \\ \vec{p}'^{z} \end{bmatrix} = \begin{bmatrix} a \ p^{x} + b \ p^{y} + c \ p^{z} + t^{x} \\ d \ p^{x} + e \ p^{y} + f \ p^{z} + t^{y} \\ g \ p^{x} + h \ p^{y} + i \ p^{z} + t^{z} \end{bmatrix}$$

•
$$J = \begin{bmatrix} a \ \partial p'^{x} / \partial p^{y} \ \partial p'^{x} / \partial p^{z} \\ \partial p'^{y} / \partial p^{x} \ \partial p'^{y} / \partial p^{y} \ \partial p'^{y} / \partial p^{z} \\ \partial p'^{z} / \partial p^{x} \ \partial p'^{z} / \partial p^{y} \ \partial p'^{z} / \partial p^{z} \end{bmatrix}$$

- Transform by Jacobian Matrix
- Matrix of partial derivatives

•
$$\begin{bmatrix} \vec{p}'^{x} \\ \vec{p}'^{y} \\ \vec{p}'^{z} \end{bmatrix} = \begin{bmatrix} a \ p^{x} + b \ p^{y} + c \ p^{z} + t^{x} \\ d \ p^{x} + e \ p^{y} + f \ p^{z} + t^{y} \\ g \ p^{x} + h \ p^{y} + i \ p^{z} + t^{z} \end{bmatrix}$$

•
$$J = \begin{bmatrix} a \ b \ \partial p'^{x} / \partial p^{z} \\ \partial p'^{y} / \partial p^{x} \ \partial p'^{y} / \partial p^{y} \ \partial p'^{y} / \partial p^{z} \\ \partial p'^{z} / \partial p^{x} \ \partial p'^{z} / \partial p^{y} \ \partial p'^{z} / \partial p^{z} \end{bmatrix}$$

- Transform by Jacobian Matrix
- Matrix of partial derivatives

•
$$\begin{bmatrix} \vec{p}'^{x} \\ \vec{p}'^{y} \\ \vec{p}'^{z} \end{bmatrix} = \begin{bmatrix} a \ p^{x} + b \ p^{y} + c \ p^{z} + t^{x} \\ d \ p^{x} + e \ p^{y} + f \ p^{z} + t^{y} \\ g \ p^{x} + h \ p^{y} + i \ p^{z} + t^{z} \end{bmatrix}$$

•
$$J = \begin{bmatrix} a \ b \ c \\ \partial p'^{y} / \partial p^{x} \ \partial p'^{y} / \partial p^{y} \ \partial p'^{y} / \partial p^{z} \\ \partial p'^{z} / \partial p^{x} \ \partial p'^{z} / \partial p^{y} \ \partial p'^{z} / \partial p^{z} \end{bmatrix}$$

- Transform by Jacobian Matrix
- Matrix of partial derivatives

•
$$\begin{bmatrix} \vec{p}'^{x} \\ \vec{p}'^{y} \\ \vec{p}'^{z} \end{bmatrix} = \begin{bmatrix} a \ p^{x} + b \ p^{y} + c \ p^{z} + t^{x} \\ d \ p^{x} + e \ p^{y} + f \ p^{z} + t^{y} \\ g \ p^{x} + h \ p^{y} + i \ p^{z} + t^{z} \end{bmatrix}$$

•
$$J = \begin{bmatrix} a \ b \ c \\ d \ e \ f \\ \partial p'^{z} / \partial p^{x} \ \partial p'^{z} / \partial p^{y} \ \partial p'^{z} / \partial p^{z} \end{bmatrix}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Vectors

- Transform by Jacobian Matrix
- Matrix of partial derivatives

•
$$\begin{bmatrix} \vec{p}'^{x} \\ \vec{p}'^{y} \\ \vec{p}'^{z} \end{bmatrix} = \begin{bmatrix} a \ p^{x} + b \ p^{y} + c \ p^{z} + t^{x} \\ d \ p^{x} + e \ p^{y} + f \ p^{z} + t^{y} \\ g \ p^{x} + h \ p^{y} + i \ p^{z} + t^{z} \end{bmatrix}$$

•
$$J = \begin{bmatrix} a \ b \ c \\ d \ e \ f \\ g \ h \ i \end{bmatrix}$$

• Upper-left 3x3

Normals

- Normal should remain perpendicular to tangent vector
- $\vec{n} \cdot \vec{v} = \vec{n}' \cdot \vec{v}' = 0$

Normals

•
$$\vec{n} \cdot \vec{v} = \vec{n}' \cdot \vec{v}' = 0$$

• $\begin{bmatrix} n_x & n_y & n_z \end{bmatrix} \begin{bmatrix} v^x \\ v^y \\ v^z \end{bmatrix} = 0$

Normals

•
$$\vec{n} \cdot \vec{v} = \vec{n}' \cdot \vec{v}' = 0$$

• $\begin{bmatrix} n_x & n_y & n_z \end{bmatrix} I \begin{bmatrix} v^x \\ v^y \\ v^z \end{bmatrix} = 0$

Normals

• Normal should remain perpendicular to tangent vector

F ~7

•
$$\vec{n} \cdot \vec{v} = \vec{n}' \cdot \vec{v}' = 0$$

•
$$\begin{bmatrix} n_x & n_y & n_z \end{bmatrix} (J^{-1}J) \begin{bmatrix} v^x \\ v^y \\ v^z \end{bmatrix} = 0$$

Normals

•
$$\vec{n} \cdot \vec{v} = \vec{n}' \cdot \vec{v}' = 0$$

• $\left(\begin{bmatrix} n_x & n_y & n_z \end{bmatrix} J^{-1} \right) \left(J \begin{bmatrix} v^x \\ v^y \\ v^z \end{bmatrix} \right) = 0$

Normals

•
$$\vec{n} \cdot \vec{v} = \vec{n}' \cdot \vec{v}' = 0$$

•
$$\left(\begin{bmatrix} n_x & n_y & n_z \end{bmatrix} J^{-1} \right) \begin{bmatrix} v'^x \\ v'^y \\ v'^z \end{bmatrix} = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Normals

•
$$\vec{n} \cdot \vec{v} = \vec{n}' \cdot \vec{v}' = 0$$

• $\begin{bmatrix} n'_x & n'_y & n'_z \end{bmatrix} \begin{bmatrix} v'^x \\ v'^y \\ v'^z \end{bmatrix} = 0$
• $\vec{n'} = \vec{n} I^{-1}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Normal should remain perpendicular to tangent vector
- $\vec{n} \cdot \vec{v} = \vec{n}' \cdot \vec{v}' = 0$
- $\begin{bmatrix} n'_x & n'_y & n'_z \end{bmatrix} \begin{bmatrix} v'^x \\ v'^y \\ v'^z \end{bmatrix} = 0$
- $\vec{n'} = \vec{n} J^{-1}$
- Multiply by inverse on right

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Normal should remain perpendicular to tangent vector
- $\vec{n} \cdot \vec{v} = \vec{n}' \cdot \vec{v}' = 0$

•
$$\begin{bmatrix} n'_{x} & n'_{y} & n'_{z} \end{bmatrix} \begin{bmatrix} v'^{x} \\ v'^{y} \\ v'^{z} \end{bmatrix} = 0$$

•
$$\vec{n'} = \vec{n} J^{-1}$$

- Multiply by inverse on right
- OR multiply column normal by inverse transpose

- Normal should remain perpendicular to tangent vector
- $\vec{n} \cdot \vec{v} = \vec{n}' \cdot \vec{v}' = 0$
- $\begin{bmatrix} n'_x & n'_y & n'_z \end{bmatrix} \begin{bmatrix} v'^x \\ v'^y \\ v'^z \end{bmatrix} = 0$
- $\vec{n'} = \vec{n}J^{-1}$
- Multiply by inverse on right
- OR multiply column normal by inverse transpose
 - $(J^{-1})^T = J$ if J is orthogonal (only rotations)