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Abstract Vectors Matrices Dot Product Cross Product

Abstract Vectors

(~u, ~v , ~w vectors; a, b, c scalars)

• Addition: ~u + ~v is a vector

• Scalar Multiplication: a~u is a vector

• Commutitive: ~u + ~v = ~v + ~u

• Distributive: (a + b)~u = a~u + b~u

• Associative: (~u + ~v) + ~w = ~u + (~v + ~w)
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Basis Vectors

Vector as linear combination of basis vectors

• ~v = 2̂i + 1ĵ =

[
2
1

]

• ~v = 1m̂ + 2n̂ =

[
1
2

]
• ~v = 1p̂ + 1q̂ =

[
1
1

]
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Abstract Vectors Matrices Dot Product Cross Product

Notation

• Column: ~v =

[
v0

v1

]
• Superscripts are just indices (borrowed from tensors)
• Some texts use columns for everything

• Row: ~v =
[
v0 v1

]
• Some texts use rows for everything
• Results in transposes and swapped order from what we’ll use

• I like columns for points/vectors, rows for normals
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Matrices

• Matrix: A =

[
a00 a01

a10 a11

]
=
[
aij

]
=
[
acolumn
row

]

• Transpose: AT =

[
a00 a10

a01 a11

]
=
[
aji

]
• Multiply: AB =

[
a00 a01

a10 a11

][
b00 b01

b10 b11

]
• aiαb

α
j is Einstein Summation Notation

• Loop and sum over matching index variables
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Einstein Summation and Code

• Math: c ij = aiαb
α
j

• Code:

f o r ( i n t i =0; i<N; ++i ) {
f o r ( i n t j =0; j<M; ++j ) {

c [ i ] [ j ] = 0 ;
f o r ( i n t α=0; α<K; α++) {

c [ i ] [ j ] = c [ i ] [ j ] + a [ i ] [ α ] ∗ b [α ] [ j ] ;
}

}
}
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Adjoint and Inverse

• Inverse: A−1A = AA−1 = I

• Determinant: |A|
• |a| = a

•
∣∣∣∣ a b
c d

∣∣∣∣ = a|d | − b|c |

•

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣ e f
h i

∣∣∣∣− b

∣∣∣∣ d f
g i

∣∣∣∣+ c

∣∣∣∣ d e
g h

∣∣∣∣
• Adjoint: A∗ = cof (A)T (matrix of cofactors cof (A))

• A−1 = A∗

|A|
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Dot Product

• Also called inner product

• ~u • ~v is a scalar
• Commutitive: ~u • ~v = ~v • ~u
• Distributive: (a~u) • ~v = ~u • (a~v) = a(~u • ~v)
• Associative: (~u + ~v) • ~w = ~u • ~w + ~v • ~w
• ~v • ~v ≥ 0
• ~v • ~v = 0↔ ~v = ~0

• Equivalent notations

• Vector: ~u • ~v
• Matrix: UTV
• Summation: uαv

α
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Abstract Vectors Matrices Dot Product Cross Product

Dot Defines Length and Angle

• ~v • ~v = |~v |2

• ~u • ~v = |~u||~v | cos θ

• Defines angle θ!
• If |~v | = 1, gives projection of ~u onto ~v
• If |~u| = |~v | = 1, gives just cos θ
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Orthogonal & Normal

• Orthogonal = perpendicular: ~u • ~v = 0

• Normal (this usage) = unit-length: ~u • ~u = 1

• Orthonormal : set of vectors both orthogonal and normal

• Orthogonal matrix : rows (& columns) orthonormal

• For orthogonal matrices, A−1 = AT
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3D Cross Product

~u × ~v

• length = area of parallelogram = twice area of triangle

• |~u × ~v | = |~u||~v | sin(θ)

• direction = perpendicular to ~u and ~v (right hand rule)
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Abstract Vectors Matrices Dot Product Cross Product

Building an Orthogonal Basis

Vectors ~u, ~v , ~w

• Gram-Schmidt (any number of dimensions)

• ~u′ = ~u
• ~w ′ = ~w − ~u′ ~w • ~u′/~u′ • ~u′ − ~v ′ ~w • ~v ′/~v ′ • ~v ′

• Cross-product (3D only)

• ~u′ = ~u
• ~w ′ = ~u′ × ~v
• ~v ′ = ~w ′ × ~u′
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