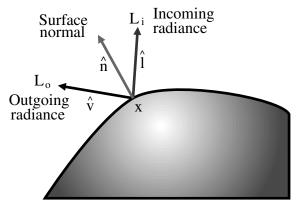
Illumination

CMSC 435/634

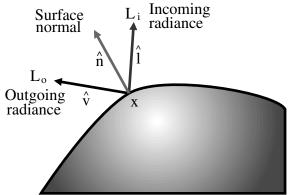
Illumination

- Effect of light on objects
- Mostly look just at intensity
 - Apply to each color channel independently
- Good for most objects
 - Not fluorescent
 - Not phosphorescent

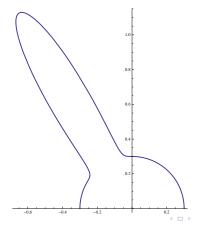

Local vs. Global

- Local
 - Light sources shining directly on object
- Global
 - Lights bouncing from objects onto other objects
 - Ambient Illumination
 - Approximate global illumination as constant color
 - \bullet Typically \sim 1% of direct illumination

BRDF


Bidirectional Reflectance Distribution Function

How much light reflects from L_i to L_o


Physically Plausible BRDF

- Positive
- Reciprocity
 - Same light from L_i to L_o as from L_o to L_i
- Conservation of Energy
 - Don't reflect more energy than comes in

Plotting BRDFs

- Polar plot of reflectance strength
 - For one view direction, showing light directions
 - For one light direction, showing view directions
- Reciprocity same if you swap view and light

Integral of all Incoming Light

$$L_o(\hat{v}) = \int_{\Omega(\hat{n})} L_i(\hat{l}) f_r(\hat{v}, \hat{l}) \hat{n} \cdot \hat{l} d\omega(\hat{l})$$

Integral of all Incoming Light

$$L_o(\hat{v}) = \int_{\Omega(\hat{n})} L_i(\hat{l}) f_r(\hat{v}, \hat{l}) \hat{n} \cdot \hat{l} d\omega(\hat{l})$$

$$L_o(\hat{v})$$
 outgoing light in direction \hat{v}

Integral of all Incoming Light

$$L_o(\hat{v}) = \int_{\Omega(\hat{n})} L_i(\hat{l}) f_r(\hat{v}, \hat{l}) \hat{n} \cdot \hat{l} d\omega(\hat{l})$$

Parts of this equation:

 $L_o(\hat{v})$ outgoing light in direction \hat{v} $\Omega(\hat{n})$ hemisphere above \hat{n} that can see this point

Integral of all Incoming Light

$$L_o(\hat{v}) = \int_{\Omega(\hat{n})} L_i(\hat{l}) f_r(\hat{v}, \hat{l}) \hat{n} \cdot \hat{l} d\omega(\hat{l})$$

$L_o(\hat{v})$	outgoing light in direction \hat{v}
$\Omega(\hat{n})$	hemisphere above \hat{n} that can see this point
$L_i(\hat{I})$	incoming light from direction \hat{l}

Integral of all Incoming Light

$$L_o(\hat{v}) = \int_{\Omega(\hat{n})} L_i(\hat{l}) f_r(\hat{v}, \hat{l}) \hat{n} \cdot \hat{l} d\omega(\hat{l})$$

$L_o(\hat{v})$	outgoing light in direction \hat{v}
$\Omega(\hat{n})$	hemisphere above \hat{n} that can see this point
$L_i(\hat{l})$	incoming light from direction \hat{l}
$f_r(\hat{\mathbf{v}}, \hat{l})$	BRDF from \hat{l} to \hat{v}

Integral of all Incoming Light

$$L_o(\hat{v}) = \int_{\Omega(\hat{n})} L_i(\hat{l}) f_r(\hat{v}, \hat{l}) \hat{n} \cdot \hat{l} d\omega(\hat{l})$$

$L_o(\hat{v})$	outgoing light in direction \hat{v}
$\Omega(\hat{n})$	hemisphere above \hat{n} that can see this point
$L_i(\hat{l})$	incoming light from direction \hat{l}
$f_r(\hat{v}, \hat{l})$	BRDF from \hat{l} to \hat{v}
$\hat{\mathbf{n}} \cdot \hat{\mathbf{l}} d\omega(\hat{\mathbf{l}})$	projection of differential solid angle onto surface

Sum for Each Light

$$L_o(\hat{v}) = \sum_i L_i f_r(\hat{v}, \hat{l}_i) \, \hat{n} \cdot \hat{l}_i$$

Parts of this equation:

 $L_o(\hat{v})$ outgoing light in direction \hat{v}

Sum for Each Light

$$L_o(\hat{v}) = \sum_i L_i f_r(\hat{v}, \hat{l}_i) \hat{n} \cdot \hat{l}_i$$

Parts of this equation:

 $L_o(\hat{v})$ outgoing light in direction \hat{v} i lights that can see this point (where $\hat{n} \cdot \hat{l}_i > 0$)

Sum for Each Light

$$L_o(\hat{v}) = \sum_i L_i f_r(\hat{v}, \hat{l}_i) \hat{n} \cdot \hat{l}_i$$

```
\begin{array}{ll} L_o(\hat{v}) & \text{outgoing light in direction } \hat{v} \\ i & \text{lights that can see this point (where } \hat{n} \cdot \hat{l}_i > 0) \\ \hat{l}_i & \text{light direction to light } i \end{array}
```

Sum for Each Light

$$L_o(\hat{v}) = \sum_i L_i f_r(\hat{v}, \hat{l}_i) \hat{n} \cdot \hat{l}_i$$

```
\begin{array}{ll} L_o(\hat{v}) & \text{outgoing light in direction } \hat{v} \\ i & \text{lights that can see this point (where } \hat{n} \cdot \hat{l}_i > 0) \\ \hat{l}_i & \text{light direction to light } i \\ L_i & \text{incoming light for light } i \end{array}
```

Sum for Each Light

$$L_o(\hat{v}) = \sum_i L_i f_r(\hat{v}, \hat{l}_i) \hat{n} \cdot \hat{l}_i$$

```
L_o(\hat{v}) outgoing light in direction \hat{v}

i lights that can see this point (where \hat{n} \cdot \hat{l}_i > 0)

\hat{l}_i light direction to light i

L_i incoming light for light i

f_r(\hat{v}, \hat{l}) BRDF from \hat{l}_i to \hat{v}
```

Results

• Integrating full environment

Results

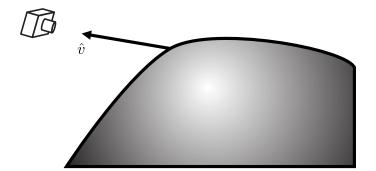
- Integrating full environment
- · Light at one point, black elsewhere

- Decompose BRDF into convenient parts
- Typical breakdown:
 - Diffuse (view independent)
 - Specular (view dependent near reflection)
 - Others less common, often ignored (e.g. retro reflection)

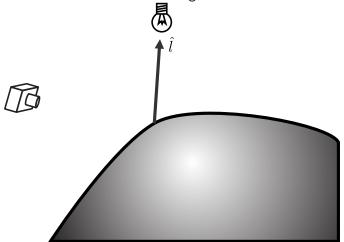
- Decompose BRDF into convenient parts
- Typical breakdown:
 - Diffuse (view independent)
 - Specular (view dependent near reflection)
 - Others less common, often ignored (e.g. retro reflection)

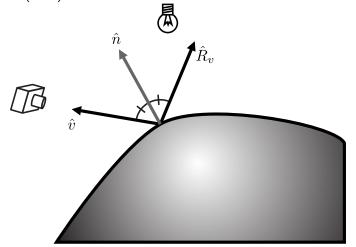


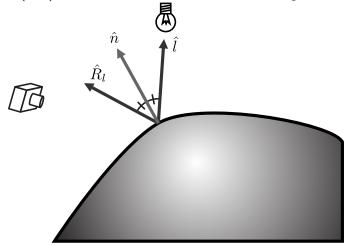
- Decompose BRDF into convenient parts
- Typical breakdown:
 - Diffuse (view independent)
 - Specular (view dependent near reflection)
 - Others less common, often ignored (e.g. retro reflection)



- Decompose BRDF into convenient parts
- Typical breakdown:
 - Diffuse (view independent)
 - Specular (view dependent near reflection)
 - Others less common, often ignored (e.g. retro reflection)



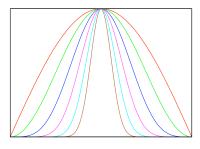

 $\hat{\mathbf{v}}$: Unit vector from surface toward viewer


 $\hat{\it l}$: Unit vector from surface toward light

 $\hat{R}_{\nu} = 2\hat{n}(\hat{n}\cdot\hat{v}) - \hat{v}$: Direction of mirror reflection of view

 $\hat{R}_l = 2\hat{n}(\hat{n} \cdot \hat{l}) - \hat{l}$: Direction of mirror reflection of light

 $\hat{h}=(\hat{v}+\hat{l})/|\hat{v}+\hat{l}|$: Normal direction that would reflect \hat{v} to \hat{l}


Diffuse

- Also called Lambertian or Matte
- Total reflectance: $\sum_{i} L_{i} Kd \hat{n} \cdot \hat{l}_{i}$
- BRDF: Kd

Phong

- Strongest where \hat{R}_l lines up with \hat{v} or \hat{R}_v lines up with \hat{l}
- Total reflectance: $\sum_{i} L_{i} Ks (\hat{R_{v}} \cdot \hat{l_{i}})^{e}$
- Physically plausible version: $\sum_{i} L_{i} Ks (\hat{R}_{v} \cdot \hat{l}_{i})^{e} \hat{n} \cdot \hat{l}$
 - With energy-conserving Ks(e)

Specular Microfacets

- Imagine random mirrored *microfacets*
- Normal Distribution Function (NDF)
 - Probability facet has normal \hat{h}
 - Only facets to reflect \hat{l} to \hat{v}
- Proportion of light or view blocked (geometry term)
 - Blocked light = shadowing
 - Blocked view = masking
- Fresnel term
 - Reflection from non-metals is stronger at glancing angles

Cook-Torrance

- Beckmann Distribution = Gaussian distribution of slope
- Shadow/Mask based on symmetric V-shaped microfacets
- BRDF: $D(\hat{n}, \hat{h}) \frac{G(\hat{n}, \hat{v}, \hat{l})}{4 \hat{n} \cdot \hat{v} \hat{n} \cdot \hat{l}} F(\hat{v}, \hat{l}),$
- Total reflectance: $\sum_{i} L_{i} D(\hat{n}, \hat{h}_{i}) \frac{G(\hat{n}, \hat{v}, \hat{l}_{i})}{4 \hat{n} \cdot \hat{v} \hat{n} \cdot \hat{l}} F(\hat{v}, \hat{l}_{i}) \hat{n} \cdot \hat{l}$

Blinn-Phong

- Alternate formulation for Phong, similar behavior
- Strongest where \hat{h} lines up with \hat{n}
 - Function of \hat{h} , behaves like NDF
- Total reflectance (original form): $\sum_{i} L_{i} Ks (\hat{n} \cdot \hat{h}_{i})^{e}$
- As NDF: $D(\hat{n}, \hat{h}_i) = \frac{e+2}{2\pi} (\hat{n} \cdot \hat{h}_i)^e$
- Reflectance: $\sum_{i} L_{i} \frac{e+2}{2\pi} (\hat{n} \cdot \hat{h}_{i})^{e} \hat{n} \cdot \hat{l}$

When to Compute

- Gouraud Shading = Compute per-vertex & interpolate
 - Lose sharp highlights
 - Subject to Mach banding
- Phong Shading = Interpolate normals & compute per-pixel

Phong Shading

- Phong shading can refer to lighting model or interpolation
- To save confusion:
 - Phong lighting
 - Phong interpolation