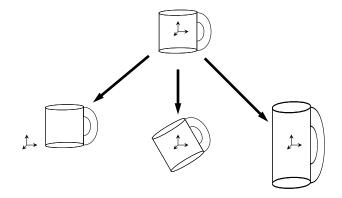
3D Transformations

CMSC 435/634

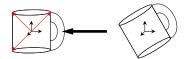
Transformation

Webster: The operation of changing one configuration or expression into another in accordance with a mathematical rule



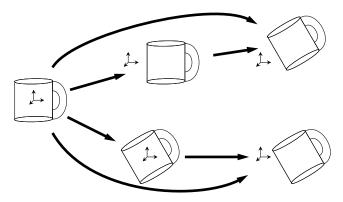
Using Transformation

- · Points on object represented as vector offset from origin
- Transform is a vector to vector function
 - $\vec{p}' = f(\vec{p})$
- Relativity:
 - From \vec{p}' point of view, object is transformed
 - From \vec{p} point of view, coordinate system changes
- Inverse transform, $ec{p}=f^{-1}(ec{p}')$



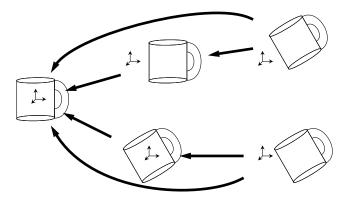
Composing Transforms

- Order matters
 - $R(T(\vec{p})) = R \circ T(\vec{p})$
 - $T(R(\vec{p})) = T \circ R(\vec{p})$



Inverting Composed Transforms

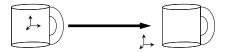
- Reverse order
 - $(R \circ T)^{-1}(\vec{p}') = T^{-1}(R^{-1}(\vec{p}'))$
 - $(T \circ R)^{-1}(\vec{p}') = R^{-1}(T^{-1}(\vec{p}'))$



Vectors and Normals

Translation

- $\vec{p}' = \vec{p} + \vec{t}$ • $\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \end{bmatrix} = \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \end{bmatrix} + \begin{bmatrix} t^{x} \\ t^{y} \\ t^{z} \end{bmatrix} = \begin{bmatrix} p^{x} + t^{x} \\ p^{y} + t^{y} \\ p^{z} + t^{z} \end{bmatrix}$
- \vec{t} says where \vec{p} -space origin ends up $(\vec{p}' = \vec{0} + \vec{t})$
- Composition: $\vec{p}' = (\vec{p} + \vec{t_0}) + \vec{t_1} = \vec{p} + (\vec{t_0} + \vec{t_1})$



Vectors and Normals

Linear Transforms

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \end{bmatrix}$$

• Matrix says where \vec{p} -space axes end up

•
$$\begin{bmatrix} a \\ d \\ g \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} b \\ e \\ h \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

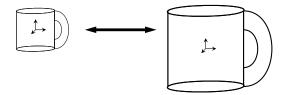
$$\begin{bmatrix} c \\ f \\ i \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

• Composition: $\vec{p}' = M (N \vec{p}) = (M N)\vec{p}$

Common case: Scaling

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \end{bmatrix} = \begin{bmatrix} s_{x} p^{x} \\ s_{y} p^{y} \\ s_{z} p^{z} \end{bmatrix} = \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & s_{z} \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \end{bmatrix}$$

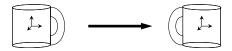
• Inverse: $\begin{bmatrix} 1/s_{x} & 0 & 0 \\ 0 & 1/s_{y} & 0 \\ 0 & 0 & 1/s_{z} \end{bmatrix}$



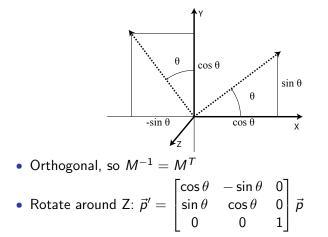
Common case: Reflection

• Negative scaling

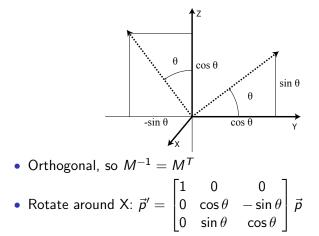
•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \end{bmatrix} = \begin{bmatrix} -p^{x} \\ p^{y} \\ p^{z} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \end{bmatrix}$$



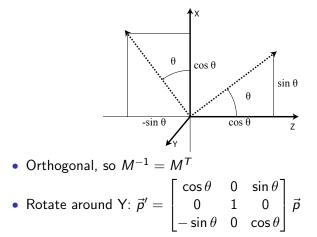
Common case: Rotation



Common case: Rotation



Common case: Rotation



Composing Transforms

- Scale by s along axis \vec{a}
 - Rotate to align \vec{a} with Z
 - Scale along Z
 - Rotate back

×X

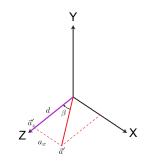
Rotate by α around X into XZ plane

• Projection of
$$\vec{a}$$
 onto YZ: $\vec{a}_{yz} = \begin{bmatrix} 0\\a^{y}\\a^{z} \end{bmatrix}$
• length $d = \sqrt{(a^{y})^{2} + (a^{z})^{2}}$
• So $\cos \alpha = a^{z}/d$, $\sin \alpha = a^{y}/d$
• $R_{X} = \begin{bmatrix} 1 & 0 & 0\\0 & a^{z}/d & -a^{y}/d\\0 & a^{y}/d & a^{z}/d \end{bmatrix}$
• Result $\vec{a}' = \begin{bmatrix} a^{x}\\0\\d \end{bmatrix}$

Rotate by $-\beta$ around Y to Z axis

•
$$\vec{a}' = \begin{bmatrix} a^{x} \\ 0 \\ d \end{bmatrix}$$

• length = 1
• So $\cos \beta = d$, $\sin \beta = a^{x}$
• $R_{Y} = \begin{bmatrix} d & 0 & -a^{x} \\ 0 & 1 & 0 \\ a^{x} & 0 & d \end{bmatrix}$
• Result $\vec{a}'' = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$



Composing Transforms

• Scale by *s* along Z:
$$S_Z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s \end{bmatrix}$$

- Scale by s along axis \vec{a}
 - Rotate to align \vec{a} with Z
 - Scale along Z
 - Rotate back
 - $\vec{p}' = R_X^{-1} R_Y^{-1} S_Z R_Y R_X \vec{p}$

Affine Transforms

- Affine = Linear + Translation
- Composition? A $(B \ \vec{p} + \vec{t_0}) + \vec{t_1} = A \ B \ \vec{p} + A \ \vec{t_0} + \vec{t_1}$
- Yuck!

Homogeneous Coordinates

• Add a '1' to each point

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t^{x} \\ d & e & f & t^{y} \\ \underline{g & h & i & t^{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p^{x} \\ p^{y} \\ p^{z} \\ 1 \end{bmatrix}$$

•
$$\vec{p}'^{x} = (a \ p^{x} + b \ p^{y} + c \ p^{z}) + t^{x}$$

•
$$\vec{p}'^{y} = (d \ p^{x} + e \ p^{y} + f \ p^{z}) + t^{y}$$

•
$$\vec{p}'^{z} = (g \ p^{x} + h \ p^{y} + i \ p^{z}) + t^{z}$$

•
$$1 = (0p^x + 0p^y + 0p^z) + 1$$

Homogeneous Coordinates

•
$$\begin{bmatrix} p'^{x} \\ p'^{y} \\ p'^{z} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t^{x} \\ d & e & f & t^{y} \\ \frac{g & h & i & t^{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p^{x^{-1}} \\ p^{y} \\ p^{z} \\ 1 \end{bmatrix}$$

• $\vec{p}' = \begin{bmatrix} \vec{x} & \vec{y} & \vec{z} & | \vec{t} \end{bmatrix} \vec{p}$

- \vec{t} says where the \vec{p} -space origin ends up
- \vec{x} , \vec{y} , \vec{z} say where the \vec{p} -space axes end up
- Composition: Just matrix multiplies!

Composing Transforms

- Rotate by θ about line between \vec{p}_0 and \vec{p}_1 :
 - Translate \vec{p}_0 to origin
 - Rotate to align $\vec{p}_1 \vec{p_0}$ with Z
 - Rotate by θ around Z
 - Undo $\vec{p}_1 \vec{p_0}$ rotation
 - Undo translation
- $T^{-1}R_X^{-1}R_Y^{-1}R_Z(\theta)R_YR_XT$

Vectors

- Transform by Jacobian Matrix
- Matrix of partial derivatives

•
$$\begin{bmatrix} \vec{p}'^{x} \\ \vec{p}'^{y} \\ \vec{p}'^{z} \end{bmatrix} = \begin{bmatrix} a \ p^{x} + b \ p^{y} + c \ p^{z} + t^{x} \\ d \ p^{x} + e \ p^{y} + f \ p^{z} + t^{y} \\ g \ p^{x} + h \ p^{y} + i \ p^{z} + t^{z} \end{bmatrix}$$

•
$$J = \begin{bmatrix} \partial p'^{x} / \partial p^{x} \ \partial p'^{x} / \partial p^{y} \ \partial p'^{x} / \partial p^{y} \ \partial p'^{y} / \partial p^{z} \\ \partial p'^{y} / \partial p^{x} \ \partial p'^{y} / \partial p^{y} \ \partial p'^{y} / \partial p^{z} \end{bmatrix}$$

•
$$J = \begin{bmatrix} a \ b \ c \\ c \ d \ f \\ g \ h \ i \end{bmatrix}$$

• Upper-left 3x3

Normals

• Normal should remain perpendicular to tangent vector

•
$$\vec{n} \cdot \vec{v} = \vec{n}' \cdot \vec{v}' = 0$$

• $\begin{bmatrix} n_x & n_y & n_z \end{bmatrix} \begin{bmatrix} v^x \\ v^y \\ v^z \end{bmatrix} = (\begin{bmatrix} n_x & n_y & n_z \end{bmatrix} J^{-1}) \left(J \begin{bmatrix} v^x \\ v^y \\ v^z \end{bmatrix} \right) = 0$

•
$$\vec{n'} = \vec{n} J^{-1}$$

- Multiply by inverse on right
- OR multiply column normal by inverse transpose
 - $(J^{-1})^T = J$ if J is orthogonal (only rotations)