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e Addition: i+ V is a vector
e Scalar Multiplication: ai is a vector
e Commutitive: 1+ V=V+ i

—

e Distributive: (a+ b)i = aid + bid

~

~



Abstract Vectors

Abstract Vectors

(d, v, w vectors; a, b, c scalars)
e Addition: i+ V is a vector
e Scalar Multiplication: ai is a vector
e Commutitive: 1+ V=V+ i
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Distributive: (a+ b)d = ai +
u

Associative: (4 + V) +w =
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Notation

0
S v
e Column: v = [ 1 ]

4

e Superscripts are just indices (borrowed from tensors)
e Some texts use columns for everything

e Row: \7:[v0 vl]
e Some texts use rows for everything
e Results in transposes and swapped order from what we'll use

e | like columns for points/vectors, rows for normals
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Matrices
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e Matrix: A= ? 1
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Abstract Vectors Matrices
Matrices
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Matrices

0
e Matrix: A=

1

ag 3

e Transpose: AT = 8 (1)
a9

. a0
e Multiply: AB = -
ag aj

b3 + by agbd + a9bi

agbd + atbg  ajb?d + aibi
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Matrices

Matrices

g
A — _ [l = I
Matrix: A = U [aj} = [agglumn]
0 91
0 .1
ag a ,
Transpose: AT = 8 (1) = [a{}
a9
0 .0 0 40
ag a by b
I\/Iultiply:AB:[ ° 1” : 1]:
ag aj by by
by +a%bs  a9bY + a%bi B [ai ba]
a;hy + atby  aibd + albl “

a,bf" is Einstein Summation Notation
e Loop and sum over matching index variables
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Einstein Summation and Code
e Math: cj: agbj‘?‘
e Code:
for(int i=0; i<N; +i) {
for(int j=0; j<M; ++j) {
c[i][i] = 0;
for(int a=0; a<K; a++) {

} c[i]lil = <clilli]l + ali]la] = bla][J]:
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Adjoint and Inverse

Inverse: A1A=AA"1 =]
Determinant: |A|

[ ] |a‘:a
a b
° c d ‘—a|d| 7b|C|
a b c
Odef:a/c;';—b’d’;—kc‘dz
g h o g g
e Adjoint: A* = cof (A)T (matrix of cofactors cof (A))
° A_l = ﬁ

Al
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Matrices Dot Product

Dot Product

e Also called inner product

eV isascalar

Commutitive: eV ="Veli
Distributive: (aii) eV = e (aVv) = a(ii e V)
Associative: (G +V)ew =lew+ Vew

vev >0
Vev=0<vV=0

Cross Product



Dot Product

Dot Product

e Also called inner product

eV isascalar

Commutitive: eV ="Veli
Distributive: (aii) eV = e (aVv) = a(ii e V)
Associative: (G +V)ew =lew+ Vew

vev >0
Vev=0<vV=0

e Equivalent notations

Vector: eV
Matrix: UTV
Summation: u,v®
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° \70\7:|\7|2
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Dot Defines Length and Angle

e Vev=|V?

o eV =|dl||V|]cosf
e Defines angle 6!
e If |V| =1, gives projection of i onto V
o If || =|V| =1, gives just cosf

R 4
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Orthogonal & Normal
e Orthogonal = perpendicular: GevV =10
e Normal (this usage) = unit-length: Ge =1

e Orthonormal: set of vectors both orthogonal and normal



Dot Product

Orthogonal & Normal

Orthogonal = perpendicular: HevV =10
Normal (this usage) = unit-length: Ge i =1
Orthonormal: set of vectors both orthogonal and normal

Orthogonal matrix: rows (& columns) orthonormal
e For orthogonal matrices, Al =AT



<

<i

3D Cross Product
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3D Cross Product

—

ixv

e length = area of parallelogram = twice area of triangle
o | x V| =|d||V|sin(8)

e direction = perpendicular to & and v (right hand rule)

u v

e w=1UXxV=

XS0 =

Cross Product



Cross Product

3D Cross Product

uxv

length = area of parallelogram = twice area of triangle
e |U x V| = |d]|V]sin(#)

direction = perpendicular to d and v (right hand rule)

i
ew=ixv=|] U V
k
WO U1V2—U2V1
° W1 = U2V0—UOV2
2 0,1

w u-v —U1V0
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.u/:u

Cross Product
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Building an Orthogonal Basis

Abstract Vectors

Vectors i, V, w
e Gram-Schmidt (any number of dimensions)

—

o U
o v/

u
V—u (ch’)

Cross Product
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Vectors i, V, w
e Gram-Schmidt (any number of dimensions)
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Building an Orthogonal Basis

Vectors i, V, w
e Gram-Schmidt (any number of dimensions)

.U/:L_j
e vi=V—u vVeu/u el
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Building an Orthogonal Basis

Vectors i, V, w
e Gram-Schmidt (any number of dimensions)

o U =1

e vi=V—u vVeu/u el

ew =w—u weu/deu —v wev VeV
e Cross-product (3D only)

S
Il
=L
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Building an Orthogonal Basis

Vectors i, V, w
e Gram-Schmidt (any number of dimensions)

.U/:L_j
o v =i — /—"U// " o U

— . - - - - - - - -
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Building an Orthogonal Basis

Abstract Vectors

Vectors i, V, w
e Gram-Schmidt (any number of dimensions)

.U/:L_j
o v =i — /—'.U// " o U

— . - - - - - - - -
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o U =10

- -
o w =u XV
o vi=w xu
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Building an Orthogonal Basis

Abstract Vectors

Vectors i, V, w
e Gram-Schmidt (any number of dimensions)
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