C++ for C programmers

CMSC 435/634

Incremental improvements to C

Well, really many significant changes
e But most developers choose a useful subset
e Start by writing C
File naming conventions:
e Source files: .C, .c++, .cc, .cpp, .CXX
e Header files: .H, .h++4, .hh, .hpp, .hxx, .h, nothing
e | usually use .hpp and .cpp
I'll just highlight a few C++ features | find useful

Comments
C comments still work
not comment /% comment %/ not comment

C++ comments from // to end of line

not comment // comment

Pointers and References
Pointer (like C)

StructType x;

StructType *y = &x; // pointer to a StructType
// use x.a or y—>a

Reference
e Acts like a regular variable
e But refers to another location like a pointer
e Can never be NULL

StructType &z = x;
// use x.a or z.a

Function overloading

Can overload functions based on parameter types
// different functions, based on type of a
int f(int a, int b);
int f(float a, int b);

Can't overload on return type

// can’'t do this
int f(int a, int b);
float f(int a, int b);

Functions and C

Overloading messes with ability to call/be called by C code

e Use extern "C”

// C function to call in G
extern "C" int fn();

// G+ function to call from C
extern "C" int fn() { ... }

Can also do blocks of code (standard includes already have this)

extern "C" {
bunch of definitions
}

Operator Functions

Lets you declare new operators +,-.*,/,[]....

// declare
Type operatorx(Type &a, Type &b);

// use
c = axb;

Best to avoid unexpected operator behavior
e a*b = vector multiply is obvious

e a*b = max would confuse anyone reading the code

Namespaces

“namespace” manages functions with the same name

// all symbols declared in namespace myPackage
namespace myPackage {

double sqrt(double a);

// sqrt() means this one, not the global one

Using functions declared in a namespace

sqrt(a); // global one
myPackage::sqrt(a); // mine

Namespaces can nest

package ::subpackage::sqrt ();

Using
Can default to use a specific namespace

sqrt(a); // global sqrt()

using namespace myPackage;
sqrt(a); // myPackage::sqrt()
cisqrt(a); // global sqrt()

Can also be more controlled

// just default to myPackage::sqrt
// not the rest of myPackage
using myPackage::sqrt;
Best to only use using in source, not headers!
e Otherwise could change which unrelated functions are used

e There is no unusing!

Implicit typedef

Built-in typedef by putting name after enum or struct

enum ColorChannel {RED, GREEN, BLUE};
struct Color {
float red, green, blue;

b
C equivalents

typedef enum {RED, GREEN, BLUE} ColorChannel;
typedef struct {

float red, green, blue;
}+ Color;

Struct as Class

Structs can contain functions

struct Color {
float red, green, blue;
float luminance() {
return 0.2126xred+0.7152xgreen+0.0722xblue;

i
H
Color col;
float lum = col.luminance ();

Inside function, this is a pointer to the current struct

Public, Private and Class

Limit who can use data and functions

struct Color {
private: // only usable by functions inside Color
float red, green, blue;

public: // usable by anyone

float luminance() {

return 0.2126xred+0.7152xgreen+0.0722xblue;
b
b

A class is just a struct that starts in private mode instead of public

Inheritance

Can extend any class (or struct) with inheritance

class Sphere : public Object {
// Sphere has everything in Object, plus..

b
Add protected:
e Like public/private, but only accessible inside child classes.

e Declare protected in parent/base class

Class namespace

All classes act like a namespace for anything inside
e Member data, functions, enums, typedefs
Use to separate declaration from code

class Color {

float red, green, blue; // note: this is private
public:

float luminance(); // just declared
i

float Color::luminance() { // need Color::
// now inside class, don't need Color::

// also can access private data

return 0.2126xred+0.7152xgreen+0.0722«blue;

b

Constructor and destructor

Special function with same name of class is constructor

e Used to initialize class data

e No return type

e Can have multiple constructors with different arguments
Special function with name “ClassName is destructor

e Used to clean up (especially allocated memory)

e No return type, no arguments

Constructor and destructor

class Color {
float red, green, blue;

public:
Color (); // constructor 1
Color(float r, float g, float b); // constructor 2
“Color (); // destructor

i

void someFunction() {
Color black; // uses constructorl

Color skyblue(0.5, 0.7, 0.9); // uses constructor 2

} // destructor called for black and skyblue

Constructor initialization list

Special constructor syntax can give a list of initial values
e Watch out! Called in class order, not list order

e Only way to specify constructor for parent class

class Sphere : public Object {
float radius;
public:
Sphere(float x, float y, float z, float r);

b

Sphere::Sphere(float x, float y, float z, float r)
Object(x, y, z), // which Object constructor
radius(r) // also member data

{ // constructor code could do member data too

}

Class pointers

Allocate/free classes with new and delete

MyClass *xc = new MyClass(constructorArgs);
delete c;

Free arrays of class data with delete]]

MyClass xarray = new MyClass[size]; // no args
delete [] array;

Can always use 0 instead of NULL for any pointer type
delete and delete[] can take NULL

e Good practice to initialize unused pointers to NULL or 0

Memory management

Simple:
e Every pointer is “owned” by one class
e That class should outlive other uses of the pointer

e That class should delete the data in its destructor

Memory management

Simple:
e Every pointer is “owned” by one class
e That class should outlive other uses of the pointer
e That class should delete the data in its destructor
More complex:

e Track and transfer pointer ownership (see autoptr)

Memory management

Simple:

e Every pointer is “owned” by one class

e That class should outlive other uses of the pointer

e That class should delete the data in its destructor
More complex:

e Track and transfer pointer ownership (see autoptr)
More complex still:

e Add reference counting to classes

e Destructor changes count, only delete if count is 0

Memory management

Simple:

e Every pointer is “owned” by one class

e That class should outlive other uses of the pointer

e That class should delete the data in its destructor
More complex:

e Track and transfer pointer ownership (see autoptr)
More complex still:

e Add reference counting to classes

e Destructor changes count, only delete if count is 0
Heavy-weight:

e Overload new / use placement new

e Allows one or more custom memory allocators in a single
application

Virtual methods

virtual calls based on the type the class is, not just the type the
pointer you have

struct Object {
void reset ();
virtual void draw ();
h
struct Sphere : public Object {
void reset ();
virtual void draw(); // MUST match

b
Object xobj = new Sphere;

obj—>reset (); // uses Object::reset()
obj—>draw (); // uses Sphere::draw()

More virtual

If you use class overloading, make the destructor virtual too!
e Makes sure the destructor of the real class is used
Pure virtual base class

e Only sub-classes can actually exist, but base class defines
common interface

struct Object {
virtual void draw() = 0;

I

Plain Old Data (POD)

Opposite end of the spectrum
e Simple class or struct
e Only POD member data
e No or simple constructor
e No destructor
e No virtual functions
Why?
e Only the additions that work with C classes

e Guarantees on how it'll map to memory

Casting

C-style casting still works

Sphere xs = (Spherex)object;
New functional form

int x = int(f); // same as x = (int)f
New forms that limit kinds of cast changes

// ONLY add or remove const
const_cast<Spherex>(var);

// if class of var is a parent or child of Sphere
static_cast<Spherex>(var);

// if run—time var object is really a Sphere
dynamic_cast<Spherex>(var);

// just do it, equivalent to (Spherex)var
reinterpret_cast<Spherex>(var);

Templates

Class or function that can work with multiple types
Can template over types or numbers
Functions should appear in a header

e But be declared inline

o Often use a separate header (.inl, .tpp, .txx)

Template declarations

Template class

template <typename Type, int Size>
struct Vector {

Type data[Size];

¥

Vector<float , 3> vec3;

Template function

template <typename Type, int Size>
Vector<Type, Size> length (Vector<Type, Size> &v);

Template specialization

Can declare special versions for certain parameter choices

template <typename Type>

struct Vector<Type, 2> {
union {

Type data[Size];
struct { Type x, y; };

}i

i

// special version with vec2.x and vec2.y
Vector<float , 2> vec2;
Full specialization

template <>
struct Vector<float, 3> {...};

Standard Template Library

Template classes for many standard data structures

string (dynamically resizes to data)

vector<type>(dynamically resizing array)
list<type>(doubly linked list)

e map<key, value>(associative array)
o ...
Common features

e in “std" namespace, use std::class or “using namespace std’

include file is name of class (#include <string>)

standard functions (begin, end, size, find, ...)

iterators to loop over elements

