
Transforms

3D Transformations

CMSC 435/634



Transforms

Generic Transforms

Transformation

Webster: The operation of changing one configuration or
expression into another in accordance with a mathematical rule



Transforms

Generic Transforms

Using Transformation

I Points on object represented as vector offset from origin
I Transform is a vector to vector function

I ~p′ = f (~p)

I Relativity:
I From ~p′ point of view, object is transformed
I From ~p point of view, coordinate system changes

I Inverse transform, ~p = f −1(~p′)



Transforms

Generic Transforms

Composing Transforms

I Order matters
I R(T (~p)) = R ◦ T (~p)
I T (R(~p)) = T ◦ R(~p)



Transforms

Generic Transforms

Inverting Composed Transforms

I Reverse order
I (R ◦ T )−1(~p′) = T−1(R−1(~p′))
I (T ◦ R)−1(~p′) = R−1(T−1(~p′))



Transforms

Common Transforms

Translation

I ~p′ = ~p +~t

I

p′xp′y

p′z

 =

pxpy
pz

+

txty
tz

 =

px + tx

py + ty

pz + tz


I ~t says where ~p-space origin ends up (~p′ = ~0 +~t)

I Composition: ~p′ = (~p + ~t0) + ~t1 = ~p + (~t0 + ~t1)



Transforms

Common Transforms

Linear Transforms

Linear Transforms

I

p′xp′y

p′z

 =

a b c
d e f
g h i

pxpy
pz


I Matrix says where ~p-space axes end up

I

ad
g

 =

a b c
d e f
g h i

1
0
0


be
h

 =

a b c
d e f
g h i

0
1
0


cf
i

 =

a b c
d e f
g h i

0
0
1


I Composition: ~p′ = M (N ~p) = (M N)~p



Transforms

Common Transforms

Linear Transforms

Common case: Scaling

I

p′xp′y

p′z

 =

sxpxsyp
y

szp
z

 =

sx 0 0
0 sy 0
0 0 sz

pxpy
pz


I Inverse:

1/sx 0 0
0 1/sy 0
0 0 1/sz





Transforms

Common Transforms

Linear Transforms

Common case: Reflection

I Negative scaling

I

p′xp′y

p′z

 =

−px

py

pz

 =

−1 0 0
0 1 0
0 0 1

pxpy
pz





Transforms

Common Transforms

Linear Transforms

Common case: Rotation

cos θ

cos θ

sin θ

-sin θ

θ

θ

I Orthogonal, so M−1 = MT

I Rotate around Z: ~p′ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

~p



Transforms

Common Transforms

Linear Transforms

Common case: Rotation

cos θ

cos θ

sin θ

-sin θ

θ

θ

I Orthogonal, so M−1 = MT

I Rotate around X: ~p′ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

~p



Transforms

Common Transforms

Linear Transforms

Common case: Rotation

cos θ

cos θ

sin θ

-sin θ

θ

θ

I Orthogonal, so M−1 = MT

I Rotate around Y: ~p′ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

~p



Transforms

Common Transforms

Linear Transforms

Composing Transforms

I Scale by s along axis ~a
I Rotate to align ~a with Z
I Scale along Z
I Rotate back



Transforms

Common Transforms

Linear Transforms

Rotate by α around X into XZ plane

I Projection of ~a onto YZ:

 0
ay

az


I length d =

√
(ay )2 + (az)2

I So cosα = az/d , sinα = ay/d

I RX =

1 0 0
0 az/d −ay/d
0 ay/d az/d


I Result ~a′ =

ax0
d





Transforms

Common Transforms

Linear Transforms

Rotate by β around Y to Z axis

I ~a′ =

ax0
d


I length = 1

I So cosβ = d , sinβ = ax

I RY =

 d 0 −ax

0 1 0
ax 0 d


I Result ~a′′ =

0
0
1





Transforms

Common Transforms

Linear Transforms

Composing Transforms

I Scale by s along Z: SZ =

1 0 0
0 1 0
0 0 s


I Scale by s along axis ~a

I Rotate to align ~a with Z
I Scale along Z
I Rotate back
I ~p′ = R−1X R−1Y SZRYRX~p



Transforms

Affine Transforms

Affine Transforms

I Affine = Linear + Translation

I Composition? A (B ~p + ~t0) + ~t1 = A B ~p + A ~t0 + ~t1
I Yuck!



Transforms

Affine Transforms

Homogeneous Coordinates

I Add a ’1’ to each point

I


p′x

p′y

p′z

1

 =


a b c tx

d e f ty

g h i tz

0 0 0 1



px

py

pz

1


I ~p′x = (a px + b py + c pz) + tx

I ~p′y = (d px + e py + f pz) + ty

I ~p′z = (g px + h py + i pz) + tz

I 1 = (0px + 0py + 0pz) + 1



Transforms

Affine Transforms

Homogeneous Coordinates

I


p′x

p′y

p′z

1

 =


a b c tx

d e f ty

g h i tz

0 0 0 1



px

py

pz

1


I ~p′ =

[
~x ~y ~z ~t

]
~p

I ~t says where the ~p-space origin ends up
I ~x , ~y , ~z say where the ~p-space axes end up

I Composition: Just matrix multiplies!



Transforms

Affine Transforms

Composing Transforms

I Rotate by θ about line between ~p0 and ~p1:
I Translate ~p0 to origin
I Rotate to align ~p1 − ~p0 with Z
I Rotate by θ around Z
I Undo ~p1 − ~p0 rotation
I Undo translation

I T−1R−1X R−1Y RZ (θ)RYRXT



Transforms

Vectors and Normals

Vectors

I Transform by Jacobian Matrix
I Matrix of partial derivatives

I

~p′x~p′y
~p′z

 =

a px + b py + c pz + tx

d px + e py + f pz + ty

g px + h py + i pz + tz


I J =

∂p′x/∂px ∂p′x/∂py ∂p′x/∂pz

∂p′y/∂px ∂p′y/∂py ∂p′y/∂pz

∂p′z/∂px ∂p′z/∂py ∂p′z/∂pz


I J =

a b c
c d f
g h i


I Upper-left 3x3



Transforms

Vectors and Normals

Normals

I Normal should remain perpendicular to tangent vector

I ~n · ~v = ~n′ · ~v ′ = 0

I
[
nx ny nz

] v xv y
v z

 =
([
nx ny nz

]
J−1

)J

v xv y
v z

 = 0

I ~n′ = ~nJ−1

I Multiply by inverse on right
I OR multiply column normal by inverse transpose

I (J−1)T = J if J is orthogonal (only rotations)


	Generic Transforms
	Common Transforms
	Linear Transforms

	Affine Transforms
	Vectors and Normals

