CMSC 435/634

- Modeling Overview

Modeling?

Modeling

Creating a *model* of an object, usually out of a collection of simpler *primitives*

Primitive

A basic shape handled directly the rendering system

Modeling Overview

Primitives

Primitives

Some common primitives

- Triangles & Polygons
 - Most common, usually the only choice for interactive
- Patches, Spheres, Cylinders, ...
 - RenderMan has these
 - Often converted to simpler primitives within the renderer
- Volumes
 - What's at each point in space?
 - Often with some transparent material
 - Few renderers handle both volume & surface models

Modeling Overview

Primitives

Composing primitives

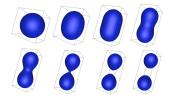
- Collections of large numbers of primitives
 - Sometimes called Boundary Representation (BRep)
- Constructive Solid Geometry (CSG)
 - Set operations (union, intersection, difference)
- Implicit Models & Blobs
 - Surface where f(x,y,z)=0
 - Sum, product, etc. of simpler functions

Modeling Overview

Primitives

Composing primitives

- Collections of large numbers of primitives
 - Sometimes called Boundary Representation (BRep)
- Constructive Solid Geometry (CSG)
 - Set operations (union, intersection, difference)
- Implicit Models & Blobs
 - Surface where f(x,y,z)=0
 - Sum, product, etc. of simpler functions


Images: Friedrich Lohmueller

Modeling Overview

— Primitives

Composing primitives

- Collections of large numbers of primitives
 - Sometimes called Boundary Representation (BRep)
- Constructive Solid Geometry (CSG)
 - Set operations (union, intersection, difference)
- Implicit Models & Blobs
 - Surface where f(x,y,z)=0
 - Sum, product, etc. of simpler functions

Images: Paul Bourke

Modeling Approaches

Manual primitive creation

Procedural

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)

- Manual primitive creation

Modeling Approaches

Manual primitive creation

Procedural

- Fractals Implicit Functions Grammars Simulations
- Scan from physical object
- From data (visualization)
- Through image capture (image-based rendering)

- Manual primitive creation

Manual Creation

- Text editor
- High-level primitives
- Modeling programs

Modeling Approaches

Manual primitive creation

Procedural Fractals Implicit Functions Grammars Simulations

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)

Modeling	
----------	--

Procedural Modeling

- Describe physical attributes through some (spatial) function
 - Shape
 - Density
 - Color
 - Texture

- Procedural

Procedural Approaches

- Fractals
- Implicit Functions
- Grammars
- Simulations

Modelir	ıg
---------	----

Ρ	rocedural	l.

- Fractals

Fractals

Complex structure through self-similarity across scales

- Iterated equations
- Iterated replacement
- Spectral Synthesis

Procedural

- Fractals

Iterated Equations / Mandelbrot Set $p' = p^2 + c$

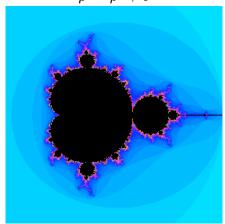
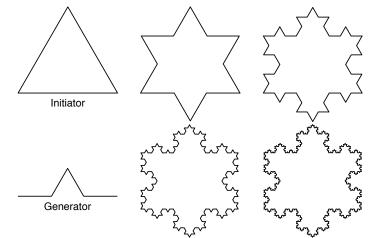



Image: David E. Joyce

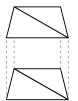
- Fractals

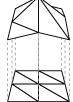
Iterated Replacement / Koch Curve

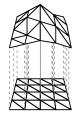
- Fractals

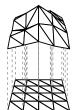
Iterated Replacement / Mountains

Randomness in replacement









Modeli	ng
--------	----

- Fractals

Spectral Synthesis

- Spectral energy a function of frequency
 - Higher frequency, less energy
 - Characterizes roughness of surface
 - Natural phenomena tend to be 1/f

Modelin	g
---------	---

- Fractals

Noise-Based Synthesis

- Band-limited Perlin noise function
 - ▶ Most energy between 1/2 and 1 cycle per unit
 - Average value is 0
 - Random, but repeatable
 - ID, 2D, 3D & 4D versions common
- Sum noise octaves
 - $n(x) + \frac{1}{2} n(2 x) + \frac{1}{4} n(4 x) + \dots$
 - Stop adding "..." when frequency is too high to see

- Fractals

Fractal Landscape

Landscape height is a fractal function of x,y

Plus whatever embellishments make it look good

Mod	eling
-----	-------

-	P	ro	ced	lura	I
---	---	----	-----	------	---

- Fractals

Multifractal

- Change roughness across fractal
 - Scaling $(\frac{1}{2}, \frac{1}{4}, ...)$ becomes a function
- Here, scale is a function of altitude

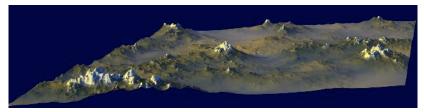
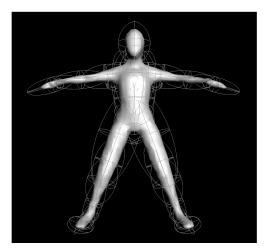


Image: Ken Musgrave

Procedural


- Implicit Functions

Implicit Functions

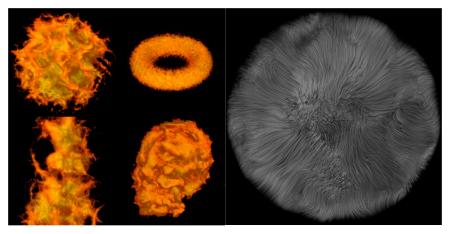
- Model as sum of implicit functions
- Surface at threshold

Liang, et al., PG'01

Procedural

Implicit Functions

Hybrid Implicit & Polygonal


Bloomenthal, SIGGRAPH 85

Procedural

Implicit Functions

Hypertexture

Add noise or turbulence to functions

Perlin & Hoffert, SIGGRAPH 89

Modeli	ng
--------	----

- Grammars

Grammar-Based Modeling

- Use (mostly) context-free grammars (CFG) to specify structural change over generations
- Often used to simulate a biological growth process
 - Plants
 - Seashells
- L-systems (Lindenmeyer)

Procedural

- Grammars

Context-Free Grammar

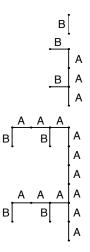
- A CFG G = (V, T, S, P) where
 - V is a set of non-terminals
 - ► T is a set of terminals
 - ► *S* is the start symbol
 - P is a set of productions (rules) of the form:
 - $A \rightarrow x$, where $A \in V, x \in (V \cup T)^*$

- Grammars

Applying Grammar Rules

Symbols

A, B, straight line segments
[], branch left 90°

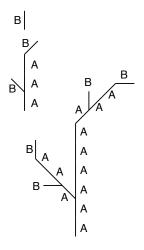

Rules

B → A[B]AA[B]
A → AA

Strings

B
A[B]AA[B]

AA[A[B]AA[B]]AAAA[A[B]]AAAA[A[B]]



- Grammars

Applying Grammar Rules

- Symbols
 - A, B, straight line segments
 - \blacktriangleright [], branch left 45°
 - (), branch right 45°
- Rules
 - $B \rightarrow A[B]AA(B)$ • $A \rightarrow AA$
- Strings
 - ► B
 - ► A[B]AA(B)

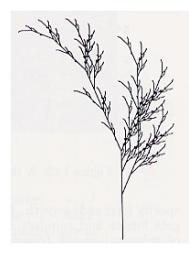
AA[A[B]AA(B)]AAAA(A[B]AA(B))

Procedural

Grammars

L-System Examples

- Symbols
 - ▶ [/] = push/pop
 - +/- = rotate left/right
 - A Z =straight segment
- Rules
 - ▶ 25.7°, 7 generations
 - $X \to F[+X][-X]FX$
 - $\blacktriangleright \ F \to FF$



Procedural

Grammars

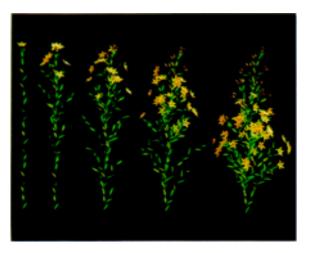
L-System Examples

- Rules
 - ▶ 22.5°, 5 generations
 - $X \rightarrow F [[X] + X] + F [+FX] X$
 - ▶ $F \rightarrow FF$

Grammars

L-System Examples

- Rules
 - ▶ 22.5°, 4 generations
 - $F \rightarrow FF [F + F + F] + [+F F F]$



Procedural

Grammars

Additions

- ► 3D structure
- Randomness
- Leaves
- Flowers

Prusinkiewicz, et al., SIGGRAPH 88

М			

Grammars

Pruning

Prusinkiewicz, et al., SIGGRAPH 94

М			

Grammars

Pruning

Prusinkiewicz, et al., SIGGRAPH 94

Procedural

- Simulations

Simulations

- Biological
 - Simulate growth, development
- Physical
 - Simulate formation or erosion

Simulations

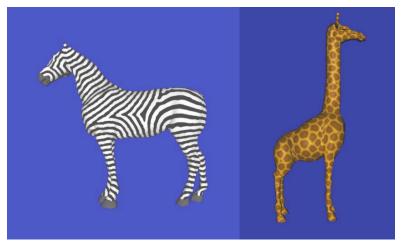
Biological Simulations

Fowler, et al., SIGGRAPH 92

Fleischer, et al., SIGGRAPH 95

- Simulations

Biological Simulations


Fowler, et al., SIGGRAPH 92

Procedural

- Simulations

Biological Simulations

Turk, SIGGRAPH 91

Procedural

- Simulations

Physical Simulation

Erosion, Deposition

Kenji Nagashima, Visual Computer 1997

Scan from physical object

Modeling Approaches

Manual primitive creation

Procedural

Fractals Implicit Functions Grammars Simulations

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)

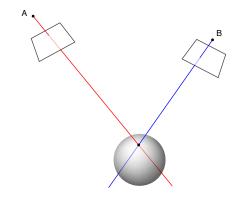
Scan from physical object

Scan from Objects

- General concept
 - Find points on surface
 - Connect into mesh
- Mechanical
- Triangulation
 - Laser
 - Structured Light
 - Multiple Cameras
- CAT scan / MRI

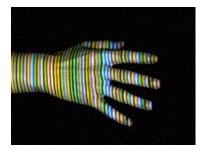
Scan from physical object

Mechanical


- Touch tip to surface
- Measure angles

-Scan from physical object

Triangulation


Point in space at intersection of ray from A and ray from B

-Scan from physical object

Structured Light

 Point in space at intersection of color edge from light source/projector and ray through camera pixel

projected pattern

resulting model

Zhang, Curless and Seitz, 3DPVT 2002

-From data (visualization)

Modeling Approaches

Manual primitive creation

Procedural

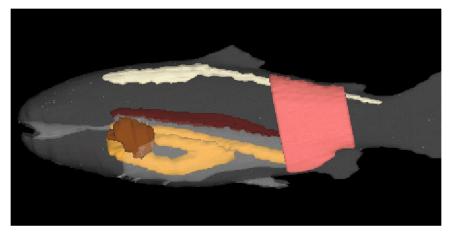
Fractals Implicit Functions Grammars Simulations

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)

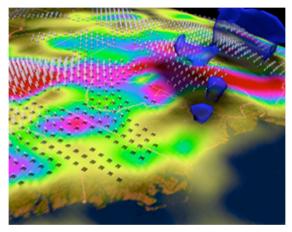
From data (visualization)


Visualization

- Data
 - measurements
 - simulation
 - information
- Present visually
 - Increase understanding
 - Recognize patterns

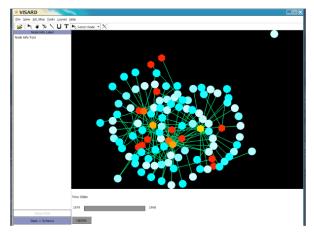
From data (visualization)

Visualization


Can be 3D Object

- From data (visualization)

Visualization


Can be 3D, but showing non-visual aspects.

-From data (visualization)

Visualization

Can be not traditionally geometric at all

— Through image capture (image-based rendering)

Modeling Approaches

Manual primitive creation

Procedural

Fractals Implicit Functions Grammars Simulations

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)

Through image capture (image-based rendering)

Image-based Rendering

- Pixels in one or more cameras
 - Color of point in space
 - Color of light along one ray
- IBR
 - Construct new novel view using only image data