Illumination

CMSC 435/634

Local Illumination

Interpolation

Illumination

Local Illumination

Interpolation

11	111	min	ati	nn

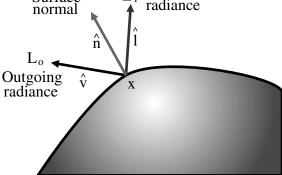
Illumination

- Effect of light on objects
- Mostly look just at intensity
 - Apply to each color channel independently
- Good for most objects
 - Not fluorescent
 - Not phosphorescent

Local vs. Global

- Local
 - Light sources shining directly on object
- Global
 - Lights bouncing from objects onto other objects
 - Ambient Illumination
 - Approximate global illumination as constant color
 - $\blacktriangleright\,$ Typically \sim 1% of direct illumination

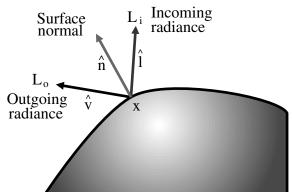
Illumination


Local Illumination BRDF Rendering Equation Models

Interpolation

I		 t	r	1	r	ı	а	t	1	n	n	

BRDF


Bidirectional Reflectance Distribution Function How much light reflects from L_i to L_o Surface normal L_i Incoming radiance

-Local Illumination

Physically Plausible BRDF

- Positive
- Reciprocity
 - Same light from L_i to L_o as from L_o to L_i
- Conservation of Energy
 - Don't reflect more energy than comes in

−Local Illumination □BRDF

Plotting BRDFs

- Polar plot of reflectance strength
 - ► For **one** view direction, showing light directions
 - For one light direction, showing view directions
- Reciprocity same if you swap view and light

-Rendering Equation

Rendering Equation

Integral of all Incoming Light

$$L_o(\hat{\mathbf{v}}) = \int_{\Omega(\hat{n})} L_i(\hat{l}) f_r(\hat{\mathbf{v}}, \hat{l}) \, \hat{n} \cdot \hat{l} \, d\omega(\hat{l})$$

Parts of this equation:

 $\begin{array}{lll} L_o(\hat{v}) & \text{outgoing light in direction } \hat{v} \\ \Omega(\hat{n}) & \text{hemisphere above } \hat{n} \text{ that can see this point} \\ L_i(\hat{l}) & \text{incoming light from direction } \hat{l} \\ f_r(\hat{v}, \hat{l}) & \text{BRDF from } \hat{l} \text{ to } \hat{v} \\ \hat{n} \cdot \hat{l} d\omega(\hat{l}) & \text{projection of differential solid angle onto surface} \end{array}$

-Local Illumination

-Rendering Equation

Rendering Equation for Point Lights

Sum for Each Light

$$L_o(\hat{\mathbf{v}}) = \sum_i L_i f_r(\hat{\mathbf{v}}, \hat{l}_i) \, \hat{n} \cdot \hat{l}_i$$

Parts of this equation:

 $\begin{array}{ll} L_o(\hat{v}) & \text{outgoing light in direction } \hat{v} \\ i & \text{lights that can see this point (where } \hat{n} \cdot \hat{l}_i > 0) \\ \hat{l}_i & \text{light direction to light } i \\ L_i & \text{incoming light for light } i \\ f_r(\hat{v}, \hat{l}) & \text{BRDF from } \hat{l}_i \text{ to } \hat{v} \end{array}$

-Local Illumination

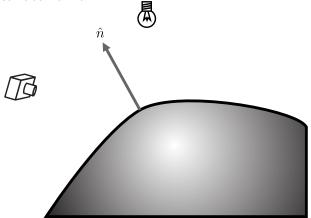
-Rendering Equation

Results

- Integrating full environment
- Light at one point, black elsewhere

-Rendering Equation

Decomposing BRDFs

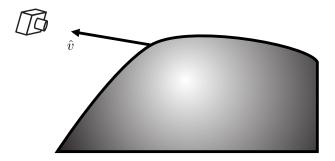

- Decompose BRDF into convenient parts
- Typical breakdown:
 - Diffuse (view independent)
 - Specular (view dependent near reflection)
 - Others less common, often ignored (e.g. retro reflection)

$$L_{o}(\hat{v}) = \sum_{i} L_{i} \left(f_{d}(\hat{v}, \hat{l}_{i}) + f_{s}(\hat{v}, \hat{l}_{i}) \right) \hat{n} \cdot \hat{l}_{i}$$
$$L_{o}(\hat{v}) = \sum_{i} L_{i} f_{d}(\hat{v}, \hat{l}_{i}) \hat{n} \cdot \hat{l}_{i} + \sum_{i} L_{i} f_{s}(\hat{v}, \hat{l}_{i}) \hat{n} \cdot \hat{l}_{i}$$

- Models

Important directions

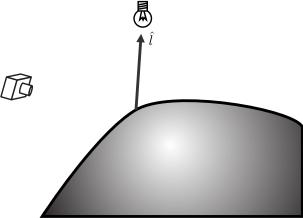
n: Unit surface normal



			on

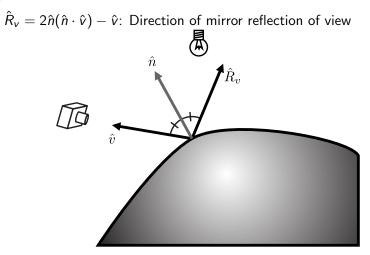
- Models

Important directions


 \hat{v} : Unit vector from surface toward viewer

- Models

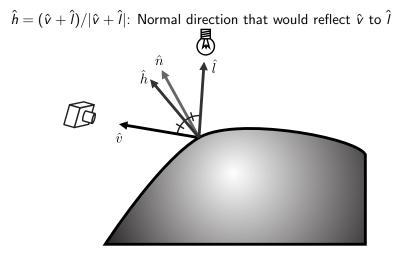
Important directions


 $\hat{\textit{l}}:$ Unit vector from surface toward light

- Models

Important directions

- Models


Important directions

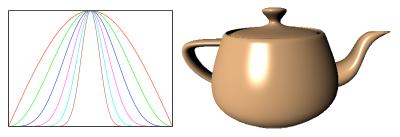
 $\hat{R}_l = 2\hat{n}(\hat{n} \cdot \hat{l}) - \hat{l}$: Direction of mirror reflection of light \hat{n} \hat{R}_l

- Models

Important directions

I	ш	u	m	ın	เล	tı	n	n

Diffuse


- Also called Lambertian or Matte
- Total reflectance: $\sum_{i} Kd L_{i} \hat{n} \cdot \hat{l}_{i}$
- BRDF: Kd

ш	li i	m	III	າລ	tı	on	

Phong

- Strongest where \hat{R}_l lines up with \hat{v} or \hat{R}_v lines up with \hat{l}
- Total reflectance: $\sum_{i} Ks L_i (\hat{R_v} \cdot \hat{l_i})^e$
- Physically plausible version: $\sum_{i} Ks L_i (\hat{R}_v \cdot \hat{l}_i)^e \hat{n} \cdot \hat{l}$
 - ▶ With energy-conserving Ks

- Models

Specular Microfacets

- Imagine random mirrored microfacets
- Normal Distribution Function (NDF)
 - Probability facet has normal \hat{h}
 - Only facets to reflect \hat{l} to \hat{v}
- Proportion of light or view blocked (geometry term)
 - Blocked light = shadowing
 - Blocked view = masking
- Fresnel term
 - Reflection from non-metals is stronger at glancing angles

п	lur	nin	ıat	tion	

- Models

Cook-Torrance

- Beckmann Distribution = Gaussian distribution of slope
- Shadow/Mask based on symmetric V-shaped microfacets
- $\blacktriangleright \text{ BRDF: } \frac{D(\hat{n},\hat{h}) G(\hat{n},\hat{v},\hat{l}) F(\hat{v},\hat{l})}{\pi \, \hat{n} \cdot \hat{v} \, \hat{n} \cdot \hat{l}}$
- ► Total reflectance: $\sum_{i} L_i Ks \frac{D(\hat{n}, \hat{h}_i) G(\hat{n}, \hat{v}, \hat{l}_i) F(\hat{v}, \hat{l}_i)}{\pi \hat{n} \cdot \hat{v}}$

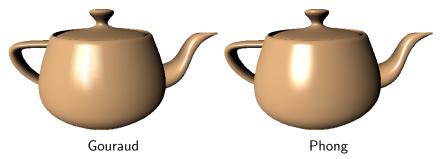
п	lur	nin	ıat	tion	

Blinn-Phong

- Alternate formulation for Phong, similar behavior
- Strongest where \hat{h} lines up with \hat{n}
 - Function of \hat{h} , behaves like NDF
- Total reflectance (original form): $\sum_{i} L_i Ks (\hat{n} \cdot \hat{h}_i)^e$
- Total reflectance (as NDF): $\sum_{i} L_i Ks \frac{e+2}{2\pi} (\hat{n} \cdot \hat{h}_i)^e \hat{n} \cdot \hat{l}_i$

- Interpolation

Illumination


Local Illumination

Interpolation

-Interpolation

When to Compute

- Gouraud Shading = Compute per-vertex & interpolate
 - Lose sharp highlights
 - Subject to Mach banding
- Phong Shading = Interpolate normals & compute per-pixel

I	u	t	r	Т	п	n	а	IŤ	1	C	1	ı	

-Interpolation

Phong Shading

- Phong shading can refer to lighting model or interpolation
- To save confusion:
 - Phong lighting
 - Phong interpolation