
Viewing

Viewing

CMSC 435/634



Viewing

Spaces

Spaces

I Object / Model
I Logical coordinates for modeling
I May have several more levels

I World
I Common coordinates for everything

I View / Camera / Eye
I eye/camera at (0,0,0), looking down Z (or -Z) axis
I planes: left, right, top, bottom, near/hither, far/yon

I Normalized Device Coordinates (NDC) / Clip
I Visible portion of scene from (-1,-1,-1) to (1,1,1)

I Raster / Pixel / Viewport
I 0,0 to x-resolution, y-resolution

I Device / Screen
I May translate to fit actual screen



Viewing

Spaces

Spaces

I Object / Model
I Logical coordinates for modeling
I May have several more levels

I World
I Common coordinates for everything

I View / Camera / Eye
I eye/camera at (0,0,0), looking down Z (or -Z) axis
I planes: left, right, top, bottom, near/hither, far/yon

I Normalized Device Coordinates (NDC) / Clip
I Visible portion of scene from (-1,-1,-1) to (1,1,1)

I Raster / Pixel / Viewport
I 0,0 to x-resolution, y-resolution

I Device / Screen
I May translate to fit actual screen



Viewing

Spaces

Spaces

I Object / Model
I Logical coordinates for modeling
I May have several more levels

I World
I Common coordinates for everything

I View / Camera / Eye
I eye/camera at (0,0,0), looking down Z (or -Z) axis
I planes: left, right, top, bottom, near/hither, far/yon

I Normalized Device Coordinates (NDC) / Clip
I Visible portion of scene from (-1,-1,-1) to (1,1,1)

I Raster / Pixel / Viewport
I 0,0 to x-resolution, y-resolution

I Device / Screen
I May translate to fit actual screen



Viewing

Spaces

Spaces

I Object / Model
I Logical coordinates for modeling
I May have several more levels

I World
I Common coordinates for everything

I View / Camera / Eye
I eye/camera at (0,0,0), looking down Z (or -Z) axis
I planes: left, right, top, bottom, near/hither, far/yon

I Normalized Device Coordinates (NDC) / Clip
I Visible portion of scene from (-1,-1,-1) to (1,1,1)

I Raster / Pixel / Viewport
I 0,0 to x-resolution, y-resolution

I Device / Screen
I May translate to fit actual screen



Viewing

Spaces

Spaces

I Object / Model
I Logical coordinates for modeling
I May have several more levels

I World
I Common coordinates for everything

I View / Camera / Eye
I eye/camera at (0,0,0), looking down Z (or -Z) axis
I planes: left, right, top, bottom, near/hither, far/yon

I Normalized Device Coordinates (NDC) / Clip
I Visible portion of scene from (-1,-1,-1) to (1,1,1)

I Raster / Pixel / Viewport
I 0,0 to x-resolution, y-resolution

I Device / Screen
I May translate to fit actual screen



Viewing

Spaces

Spaces

I Object / Model
I Logical coordinates for modeling
I May have several more levels

I World
I Common coordinates for everything

I View / Camera / Eye
I eye/camera at (0,0,0), looking down Z (or -Z) axis
I planes: left, right, top, bottom, near/hither, far/yon

I Normalized Device Coordinates (NDC) / Clip
I Visible portion of scene from (-1,-1,-1) to (1,1,1)

I Raster / Pixel / Viewport
I 0,0 to x-resolution, y-resolution

I Device / Screen
I May translate to fit actual screen



Viewing

Spaces

Spaces

I Object / Model
I Logical coordinates for modeling
I May have several more levels

I World
I Common coordinates for everything

I View / Camera / Eye
I eye/camera at (0,0,0), looking down Z (or -Z) axis
I planes: left, right, top, bottom, near/hither, far/yon

I Normalized Device Coordinates (NDC) / Clip
I Visible portion of scene from (-1,-1,-1) to (1,1,1)

I Raster / Pixel / Viewport
I 0,0 to x-resolution, y-resolution

I Device / Screen
I May translate to fit actual screen



Viewing

Spaces

Model→World / Model→View

I Model→World
I All shading and rendering in World space
I Transform all objects and lights

I Ray tracing implicitly does World→Raster
I Model→View

I Serves just as well for single view



Viewing

Spaces

World→View

I Also called Viewing or Camera transform
I LookAt

I
−−→
from,

−→
to ,−→up

I

[
~u ~v ~w

−−→
from

]
I Roll / Pitch / Yaw

I Translate to camera center, rotate around camera
I Rz Rx Ry T
I Can have gimbal lock

I Orbit
I Rotate around object center, translate out
I T Rz Rx Ry

I Also can have gimbal lock



Viewing

Spaces

View→NDC

I Also called Projection transform
I Orthographic / Parallel

I Translate & Scale to view volume

I


2

r−l 0 0 − r+l
r−l

0 2
t−b 0 − t+b

t−b

0 0 2
n−f − n+f

n−f

0 0 0 1


I Perspective

I More complicated...



Viewing

Spaces

NDC→Raster

I Also called Viewport transform
I [−1, 1], [−1, 1], [−1, 1]→ [−1

2 , nx−1
2 ], [−1

2 , ny−1
2 ], [−1

2 , nz−1
2 ]

I Translate to [0, 2], [0, 2], [0, 2]
I Scale to [0, nx ], [0, ny ], [0, nz ]
I Translate to [− 1

2 , nx − 1
2 ], [− 1

2 , ny − 1
2 ], [− 1

2 , nz − 1
2 ]

nx
2 0 0 nx−1

2

0
ny
2 0

ny−1
2

0 0 nz
2

nz−1
2

0 0 0 1





Viewing

Spaces

NDC→Raster

I Also called Viewport transform
I [−1, 1], [−1, 1], [−1, 1]→ [−1

2 , nx−1
2 ], [−1

2 , ny−1
2 ], [−1

2 , nz−1
2 ]

I Translate to [0, 2], [0, 2], [0, 2]
I Scale to [0, nx ], [0, ny ], [0, nz ]
I Translate to [− 1

2 , nx − 1
2 ], [− 1

2 , ny − 1
2 ], [− 1

2 , nz − 1
2 ]

nx
2 0 0 nx−1

2

0
ny
2 0

ny−1
2

0 0 nz
2

nz−1
2

0 0 0 1





Viewing

Spaces

NDC→Raster

I Also called Viewport transform
I [−1, 1], [−1, 1], [−1, 1]→ [−1

2 , nx−1
2 ], [−1

2 , ny−1
2 ], [−1

2 , nz−1
2 ]

I Translate to [0, 2], [0, 2], [0, 2]
I Scale to [0, nx ], [0, ny ], [0, nz ]
I Translate to [− 1

2 , nx − 1
2 ], [− 1

2 , ny − 1
2 ], [− 1

2 , nz − 1
2 ]

nx
2 0 0 nx−1

2

0
ny
2 0

ny−1
2

0 0 nz
2

nz−1
2

0 0 0 1





Viewing

Spaces

NDC→Raster

I Also called Viewport transform
I [−1, 1], [−1, 1], [−1, 1]→ [−1

2 , nx−1
2 ], [−1

2 , ny−1
2 ], [−1

2 , nz−1
2 ]

I Translate to [0, 2], [0, 2], [0, 2]
I Scale to [0, nx ], [0, ny ], [0, nz ]
I Translate to [− 1

2 , nx − 1
2 ], [− 1

2 , ny − 1
2 ], [− 1

2 , nz − 1
2 ]

nx
2 0 0 nx−1

2

0
ny
2 0

ny−1
2

0 0 nz
2

nz−1
2

0 0 0 1





Viewing

Spaces

NDC→Raster

I Also called Viewport transform
I [−1, 1], [−1, 1], [−1, 1]→ [−1

2 , nx−1
2 ], [−1

2 , ny−1
2 ], [−1

2 , nz−1
2 ]

I Translate to [0, 2], [0, 2], [0, 2]
I Scale to [0, nx ], [0, ny ], [0, nz ]
I Translate to [− 1

2 , nx − 1
2 ], [− 1

2 , ny − 1
2 ], [− 1

2 , nz − 1
2 ]

nx
2 0 0 nx−1

2

0
ny
2 0

ny−1
2

0 0 nz
2

nz−1
2

0 0 0 1





Viewing

Spaces

Raster→Screen

I Usually just a translation
I More complicated for tiled displays, domes, etc.

I Usually handled by windowing system



Viewing

Perspective

Perspective View Frustum

I Orthographic view volume is a rectangular volume

I Perspective is a truncated pyramid or frustum

near / hither

far / yon

rightleft

bottom

top



Viewing

Perspective

Perspective View Frustum

I Orthographic view volume is a rectangular volume

I Perspective is a truncated pyramid or frustum

near / hither

far / yon

right
left

bottom

top

eye



Viewing

Perspective

Perspective Transform

I Ray tracing
I Given screen (sx , sy ), parameterize all points ~p

I Perspective Transform
I Given ~p, find (sx , sy )
I Use similar triangles
I sy/d = py/pz So sy = dpy/pz



Viewing

Perspective

Perspective Transform

I Ray tracing
I Given screen (sx , sy ), parameterize all points ~p

I Perspective Transform
I Given ~p, find (sx , sy )
I Use similar triangles
I sy/d = py/pz So sy = dpy/pz



Viewing

Perspective

Perspective Transform

I Ray tracing
I Given screen (sx , sy ), parameterize all points ~p

I Perspective Transform
I Given ~p, find (sx , sy )
I Use similar triangles
I sy/d = py/pz So sy = dpy/pz



Viewing

Perspective

Perspective Transform

I Ray tracing
I Given screen (sx , sy ), parameterize all points ~p

I Perspective Transform
I Given ~p, find (sx , sy )
I Use similar triangles
I sy/d = py/pz So sy = dpy/pz



Viewing

Perspective

Perspective Transform

I Ray tracing
I Given screen (sx , sy ), parameterize all points ~p

I Perspective Transform
I Given ~p, find (sx , sy )
I Use similar triangles
I sy/d = py/pz So sy = dpy/pz



Viewing

Perspective

Homogeneous Equations

I Same degree for every term

I Introduce a new redundant variable
I a X + b Y + c = 0

I X = x/w ,Y = y/w
I a x/w + b y/w + c = 0
I → a x + b y + c w = 0

I a X 2 + b X Y + c Y 2 + d X + e Y + f = 0
I X = x/w ,Y = y/w
I a x2/w2 + b x y/w2 + c y2/w2 + d x/w + e y/w + f = 0
I → a x2 + b x y + c y2 + d x w + e y w + f w2 = 0



Viewing

Perspective

Homogeneous Equations

I Same degree for every term

I Introduce a new redundant variable
I a X + b Y + c = 0

I X = x/w ,Y = y/w
I a x/w + b y/w + c = 0
I → a x + b y + c w = 0

I a X 2 + b X Y + c Y 2 + d X + e Y + f = 0
I X = x/w ,Y = y/w
I a x2/w2 + b x y/w2 + c y2/w2 + d x/w + e y/w + f = 0
I → a x2 + b x y + c y2 + d x w + e y w + f w2 = 0



Viewing

Perspective

Homogeneous Equations

I Same degree for every term

I Introduce a new redundant variable
I a X + b Y + c = 0

I X = x/w ,Y = y/w
I a x/w + b y/w + c = 0
I → a x + b y + c w = 0

I a X 2 + b X Y + c Y 2 + d X + e Y + f = 0
I X = x/w ,Y = y/w
I a x2/w2 + b x y/w2 + c y2/w2 + d x/w + e y/w + f = 0
I → a x2 + b x y + c y2 + d x w + e y w + f w2 = 0



Viewing

Perspective

Homogeneous Equations

I Same degree for every term

I Introduce a new redundant variable
I a X + b Y + c = 0

I X = x/w ,Y = y/w
I a x/w + b y/w + c = 0
I → a x + b y + c w = 0

I a X 2 + b X Y + c Y 2 + d X + e Y + f = 0
I X = x/w ,Y = y/w
I a x2/w2 + b x y/w2 + c y2/w2 + d x/w + e y/w + f = 0
I → a x2 + b x y + c y2 + d x w + e y w + f w2 = 0



Viewing

Perspective

Homogeneous Equations

I Same degree for every term

I Introduce a new redundant variable
I a X + b Y + c = 0

I X = x/w ,Y = y/w
I a x/w + b y/w + c = 0
I → a x + b y + c w = 0

I a X 2 + b X Y + c Y 2 + d X + e Y + f = 0
I X = x/w ,Y = y/w
I a x2/w2 + b x y/w2 + c y2/w2 + d x/w + e y/w + f = 0
I → a x2 + b x y + c y2 + d x w + e y w + f w2 = 0



Viewing

Perspective

Homogeneous Equations

I Same degree for every term

I Introduce a new redundant variable
I a X + b Y + c = 0

I X = x/w ,Y = y/w
I a x/w + b y/w + c = 0
I → a x + b y + c w = 0

I a X 2 + b X Y + c Y 2 + d X + e Y + f = 0
I X = x/w ,Y = y/w
I a x2/w2 + b x y/w2 + c y2/w2 + d x/w + e y/w + f = 0
I → a x2 + b x y + c y2 + d x w + e y w + f w2 = 0



Viewing

Perspective

Homogeneous Equations

I Same degree for every term

I Introduce a new redundant variable
I a X + b Y + c = 0

I X = x/w ,Y = y/w
I a x/w + b y/w + c = 0
I → a x + b y + c w = 0

I a X 2 + b X Y + c Y 2 + d X + e Y + f = 0
I X = x/w ,Y = y/w
I a x2/w2 + b x y/w2 + c y2/w2 + d x/w + e y/w + f = 0
I → a x2 + b x y + c y2 + d x w + e y w + f w2 = 0



Viewing

Perspective

Homogeneous Equations

I Same degree for every term

I Introduce a new redundant variable
I a X + b Y + c = 0

I X = x/w ,Y = y/w
I a x/w + b y/w + c = 0
I → a x + b y + c w = 0

I a X 2 + b X Y + c Y 2 + d X + e Y + f = 0
I X = x/w ,Y = y/w
I a x2/w2 + b x y/w2 + c y2/w2 + d x/w + e y/w + f = 0
I → a x2 + b x y + c y2 + d x w + e y w + f w2 = 0



Viewing

Perspective

Homogeneous Equations

I Same degree for every term

I Introduce a new redundant variable
I a X + b Y + c = 0

I X = x/w ,Y = y/w
I a x/w + b y/w + c = 0
I → a x + b y + c w = 0

I a X 2 + b X Y + c Y 2 + d X + e Y + f = 0
I X = x/w ,Y = y/w
I a x2/w2 + b x y/w2 + c y2/w2 + d x/w + e y/w + f = 0
I → a x2 + b x y + c y2 + d x w + e y w + f w2 = 0



Viewing

Perspective

Homogeneous Equations

I Same degree for every term

I Introduce a new redundant variable
I a X + b Y + c = 0

I X = x/w ,Y = y/w
I a x/w + b y/w + c = 0
I → a x + b y + c w = 0

I a X 2 + b X Y + c Y 2 + d X + e Y + f = 0
I X = x/w ,Y = y/w
I a x2/w2 + b x y/w2 + c y2/w2 + d x/w + e y/w + f = 0
I → a x2 + b x y + c y2 + d x w + e y w + f w2 = 0



Viewing

Perspective

Homogeneous Coordinates

I Rather than (x , y , z , 1), use (x , y , z ,w)

I Real 3D point is (X ,Y ,Z ) = (x/w , y/w , z/w)

I Can represent Perspective Transform as 4x4 matrix
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0




px

py

pz

1

 =


px

py

pz

pz/d

→
d px/pz

d py/pz

d





Viewing

Perspective

Homogeneous Depth
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0




px

py

pz

1

 =


px

py

pz

pz/d

→
d px/pz

d py/pz

d


I Lose depth information
I Can’t get d p′z/pz = pz

I Plus x/z , y/z , z isn’t linear

I Use Projective Geometry



Viewing

Perspective

Projective Geometry

I If x , y , z lie on a plane, x/z , y/z , 1/z also lie on a plane

I 1/z is strictly ordered: if z1 < z2, then 1/z1 > 1/z2
I New matrix:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




px

py

pz

1

 =


px

py

1
pz

→
px/pz

py/pz

1/pz





Viewing

Perspective

Getting Fancy

I Add scale & translate
I Field of view
I near/far range
a 0 0 0
0 a 0 0
0 0 b c
0 0 −1 0




px

py

pz

1

 =


a px

a py

b pz + c
−pz

→
 −apx

pz

−apy

pz

−b − c
/pz


I a = cotan(fieldOfView/2)
I Solve for n→ −1 and f → 1

I b = n+f
n−f

I c = 2 n f
f−n



Viewing

Perspective

Getting Fancy

I Add scale & translate
I Field of view
I near/far range
a 0 0 0
0 a 0 0
0 0 b c
0 0 −1 0




px

py

pz

1

 =


a px

a py

b pz + c
−pz

→
 −apx

pz

−apy

pz

−b − c
/pz


I a = cotan(fieldOfView/2)
I Solve for n→ −1 and f → 1

I b = n+f
n−f

I c = 2 n f
f−n



Viewing

Perspective

On Field of View

I Given image dimensions, set distance
I Camera image sensor and focal length

I Given field of view angle in square window
I Non-square aspect ratio

I Given horizontal (or vertical) field of view
I Given diagonal field of view

I Off-center projection
I Tiled displays
I Head tracking



Viewing

Perspective

OpenGL

I glMatrixMode(GL MODELVIEW)
I glTranslatef(x,y,z)
I glRotatef(degrees,x,y,z)
I glScalef(x,y,z)
I gluLookAt(eyeX,eyeY,eyeZ, atX,atY,atZ, upX,upY,upZ)

I glMatrixMode(GL PERSPECTIVE)
I glOrtho(nearL,nearR,nearT,nearB, near,far)
I glFrustum(nearL,nearR,nearT,nearB, near,far)
I gluPerspective(yFOV,aspect, near,far)
I glViewport(left,right, width,height)

I raw interface
I glLoadIdentity()
I glLoadMatrixf(float*)
I glMultMatrixf(float*)


	Spaces
	Perspective

