Vector Math

CMSC 435/634

- $\vec{u} + \vec{v}$ is a vector
- ightharpoonup $a\vec{u}$ is a vector

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

$$\triangleright (a+b)\vec{u} = a\vec{u} + b\vec{u}$$

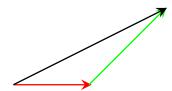
$$\vec{u} + \vec{v} + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

- $\vec{u} + \vec{v}$ is a vector
- ► aū is a vector

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

$$(a+b)\vec{u} = a\vec{u} + b\vec{u}$$

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

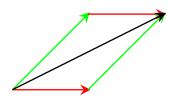


- $\vec{u} + \vec{v}$ is a vector
- ▶ aū is a vector

$$(a+b)\vec{u} = a\vec{u} + b\vec{u}$$

$$\qquad \qquad \boxed{\vec{u} + \vec{v}} + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

- $\vec{u} + \vec{v}$ is a vector
- $ightharpoonup a\vec{u}$ is a vector
- $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- $(a+b)\vec{u} = a\vec{u} + b\vec{u}$
- $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$



- $\vec{u} + \vec{v}$ is a vector
- ▶ aū is a vector

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

$$(a+b)\vec{u} = a\vec{u} + b\vec{u}$$

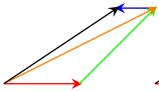
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

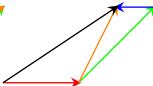
- $\vec{u} + \vec{v}$ is a vector
- $ightharpoonup a\vec{u}$ is a vector

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

$$(a+b)\vec{u} = a\vec{u} + b\vec{u}$$

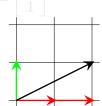
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$





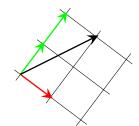
$$\vec{v} = 2\hat{i} + 1\hat{j} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\vec{v} = 1\hat{m} + 2\hat{n} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$



$$\vec{\mathbf{v}} = 2\hat{\mathbf{i}} + 1\hat{\mathbf{j}} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

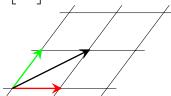
$$ightharpoonup ec{v} = 1\hat{m} + 2\hat{n} = \left[egin{array}{c} 1 \ 2 \end{array}
ight]$$



$$\vec{v} = 2\hat{i} + 1\hat{j} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$ightharpoonup ec{v} = 1\hat{m} + 2\hat{n} = \left[egin{array}{c} 1 \ 2 \end{array}
ight]$$

$$ightarrow ec{v} = 1\hat{
ho} + 1\hat{q} = \left[egin{array}{c} 1 \ 1 \end{array}
ight]$$



$$\vec{\mathbf{v}} = 2\hat{\mathbf{i}} + 1\hat{\mathbf{j}} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$ightharpoonup ec{v} = 1\hat{m} + 2\hat{n} = \left[egin{array}{c} 1 \\ 2 \end{array}
ight]$$

$$ightarrow ec{v} = 1\hat{p} + 1\hat{q} = \left[egin{array}{c} 1 \ 1 \end{array}
ight]$$

- ► Column: $\vec{v} = \begin{bmatrix} v^0 \\ v^1 \end{bmatrix}$ (we'll usually use this form)
- ightharpoonup Row: $\vec{v} = \left[\begin{array}{cc} v_0 & v_1 \end{array} \right]$ (some texts; I like for normals)

$$\vec{\mathbf{v}} = 2\hat{\mathbf{i}} + 1\hat{\mathbf{j}} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

$$ightharpoonup ec{v} = 1\hat{m} + 2\hat{n} = \left[egin{array}{c} 1 \\ 2 \end{array}
ight]$$

$$ightarrow ec{v} = 1\hat{p} + 1\hat{q} = \left[egin{array}{c} 1 \ 1 \end{array}
ight]$$

- ► Column: $\vec{v} = \begin{bmatrix} v^0 \\ v^1 \end{bmatrix}$ (we'll usually use this form)
- ▶ Row: $\vec{v} = \begin{bmatrix} v_0 & v_1 \end{bmatrix}$ (some texts; I like for normals)

Matrices

Matrix:
$$A = \begin{bmatrix} a_0^0 & a_1^0 \\ a_0^1 & a_1^1 \end{bmatrix} = \begin{bmatrix} a_j^i \end{bmatrix}$$

► Transpose:
$$A^T = \begin{bmatrix} a_0^0 & a_0^1 \\ a_1^0 & a_1^1 \end{bmatrix} = \begin{bmatrix} a_i^j \end{bmatrix}$$

Multiply:
$$AB = \begin{bmatrix} a_0^0 & a_1^0 \\ a_0^1 & a_1^1 \end{bmatrix} \begin{bmatrix} b_0^0 & b_1^0 \\ b_0^1 & b_1^1 \end{bmatrix} = \begin{bmatrix} a_0^0 b_0^0 + a_1^0 b_0^1 & a_0^0 b_1^0 + a_1^0 b_1^1 \\ a_1^1 b_0^0 + a_1^1 b_1^1 & a_1^1 b_0^0 + a_1^1 b_1^1 \end{bmatrix} = \begin{bmatrix} a_\alpha^i b_\beta^\alpha \end{bmatrix}$$

Matrices

► Transpose:
$$A^T = \begin{bmatrix} a_0^0 & a_0^1 \\ a_1^0 & a_1^1 \end{bmatrix} = \begin{bmatrix} a_i^j \end{bmatrix}$$

► Multiply:
$$AB = \begin{bmatrix} a_0^0 & a_1^0 \\ a_0^1 & a_1^1 \end{bmatrix} \begin{bmatrix} b_0^0 & b_1^0 \\ b_0^1 & b_1^1 \end{bmatrix} = \begin{bmatrix} a_0^0 b_0^0 + a_1^0 b_0^1 & a_0^0 b_1^0 + a_1^0 b_1^1 \\ a_0^1 b_0^0 + a_1^1 b_0^1 & a_0^1 b_1^0 + a_1^1 b_1^1 \end{bmatrix} = \begin{bmatrix} a_\alpha^i b_\beta^\alpha \end{bmatrix}$$

Matrices

► Transpose:
$$A^T = \begin{bmatrix} a_0^0 & a_0^1 \\ a_1^0 & a_1^1 \end{bmatrix} = \begin{bmatrix} a_i^j \end{bmatrix}$$

$$\text{Multiply: } AB = \begin{bmatrix} a_0^0 & a_1^0 \\ a_0^1 & a_1^1 \end{bmatrix} \begin{bmatrix} b_0^0 & b_1^0 \\ b_0^1 & b_1^1 \end{bmatrix} = \\ \begin{bmatrix} a_0^0 b_0^0 + a_1^0 b_0^1 & a_0^0 b_1^0 + a_1^0 b_1^1 \\ a_0^1 b_0^0 + a_1^1 b_0^1 & a_0^1 b_1^0 + a_1^1 b_1^1 \end{bmatrix} = \begin{bmatrix} a_\alpha^i b_j^\alpha \end{bmatrix}$$

- ► Inverse: $A^{-1}A = AA^{-1} = I$
- ▶ Determinant: |A|

$$\begin{vmatrix} a & b & a \\ c & d & a \end{vmatrix} = a|d| - b|c|$$

$$\begin{vmatrix} a & b & c \\ c & d & a \end{vmatrix} = a|d| - b|c|$$

$$\begin{vmatrix} a & b & c \\ c & n & i \end{vmatrix} = a \begin{vmatrix} c & i \\ n & i \end{vmatrix} = b \begin{vmatrix} d & i \\ c & n \end{vmatrix} + c \begin{vmatrix} d & c \\ c & n \end{vmatrix}$$

$$A^{-1} = \frac{A^*}{|A|}$$

- ► Inverse: $A^{-1}A = AA^{-1} = I$
- ▶ Determinant: |A|

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a$$

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a |d| - b |c|$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

Adjoint: $A^* = cof(A)^T$ (matrix of cofactors cof(A))

$$A^{-1} = \frac{A^*}{|A|}$$

- ► Inverse: $A^{-1}A = AA^{-1} = I$
- ▶ Determinant: |A|

►
$$|a| = a$$

► $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a|d| - b|c|$

► $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a\begin{vmatrix} e & f \\ h & i \end{vmatrix} - b\begin{vmatrix} d & f \\ g & i \end{vmatrix} + c\begin{vmatrix} d & e \\ g & h \end{vmatrix}$

- Adjoint: $A^* = cof(A)^T$ (matrix of cofactors cof(A))
- $A^{-1} = \frac{A^*}{|A|}$

- ► Inverse: $A^{-1}A = AA^{-1} = I$
- ▶ Determinant: |A|

$$\begin{vmatrix} a| = a \\ a & b \\ c & d \end{vmatrix} = a|d| - b|c|$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

- Adjoint: $A^* = cof(A)^T$ (matrix of cofactors cof(A))
- $A^{-1} = \frac{A^*}{|A|}$

- ► Inverse: $A^{-1}A = AA^{-1} = I$
- ▶ Determinant: |A|

$$\begin{vmatrix} |a| = a \\ a & b \\ c & d \end{vmatrix} = a|d| - b|c|$$

$$\begin{vmatrix} |a| & b| & c \\ |a| & b| & c \\ |d| & e| & f \\ |g| & h| & i \end{vmatrix} = a\begin{vmatrix} |e| & f \\ |h| & i \end{vmatrix} - b\begin{vmatrix} |d| & f \\ |g| & i \end{vmatrix} + c\begin{vmatrix} |d| & e \\ |g| & h \end{vmatrix}$$

- Adjoint: $A^* = cof(A)^T$ (matrix of cofactors cof(A))

- ► Inverse: $A^{-1}A = AA^{-1} = I$
- ► Determinant: |A|

$$\begin{vmatrix} |a| = a \\ a & b \\ c & d \end{vmatrix} = a|d| - b|c|$$

$$\begin{vmatrix} |a| & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} |e| & f \\ h & i \end{vmatrix} - b \begin{vmatrix} |d| & f \\ g & i \end{vmatrix} + c \begin{vmatrix} |d| & e \\ g & h \end{vmatrix}$$

▶ Adjoint: $A^* = cof(A)^T$ (matrix of cofactors cof(A))

$$A^{-1} = \frac{A^*}{|A|}$$

- ► Inverse: $A^{-1}A = AA^{-1} = I$
- ► Determinant: |A|

$$|a| = a$$

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a|d| - b|c|$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a\begin{vmatrix} e & f \\ h & i \end{vmatrix} - b\begin{vmatrix} d & f \\ g & i \end{vmatrix} + c\begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

- ▶ Adjoint: $A^* = cof(A)^T$ (matrix of cofactors cof(A))
- $A^{-1} = \frac{A^*}{|A|}$

Also called inner product

- $\vec{u} \cdot \vec{v}$ is a scalar
- $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
 - $(a\vec{u}) \bullet \vec{v} = a(\vec{u} \bullet \vec{v})$
- $(\vec{u} + \vec{v}) \bullet \vec{w} = \vec{u} \bullet \vec{w} + \vec{v} \bullet \vec{w}$
- $\vec{v} \cdot \vec{v} = \vec{v} > 0$
- $\vec{v} \cdot \vec{v} = 0 \leftrightarrow \vec{v} = \vec{0}$
- Matrix notation: $\vec{u} \bullet \vec{v} = U^T V = u_{\alpha} v^{\alpha}$

- Also called inner product
 - $\vec{u} \cdot \vec{v}$ is a scalar

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

$$(a\vec{u}) \bullet \vec{v} = a(\vec{u} \bullet \vec{v})$$

$$(\vec{u} + \vec{v}) \bullet \vec{w} = \vec{u} \bullet \vec{w} + \vec{v} \bullet \vec{w}$$

$$\vec{v} \cdot \vec{v} = \vec{v} \ge 0$$

$$\vec{v} \cdot \vec{v} \cdot \vec{v} = 0 \leftrightarrow \vec{v} = \vec{0}$$

Matrix notation:
$$\vec{u} \bullet \vec{v} = U^T V = u_{\alpha} v^{\alpha}$$

- Also called inner product
 - $\vec{u} \cdot \vec{v}$ is a scalar

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

$$\bullet \ (a\vec{u}) \bullet \vec{v} = a(\vec{u} \bullet \vec{v})$$

$$\qquad \qquad \bullet \ \, \left(\vec{u} + \vec{v} \right) \bullet \vec{w} = \vec{u} \bullet \vec{w} + \vec{v} \bullet \vec{w}$$

$$\vec{v} \cdot \vec{v} \cdot \vec{v} \geq 0$$

$$\vec{v} \cdot \vec{v} = 0 \leftrightarrow \vec{v} = 0$$

Matrix notation: $\vec{u} \bullet \vec{v} = U^T V = u_{\alpha} v^{\alpha}$

- Also called inner product
 - $\vec{u} \cdot \vec{v}$ is a scalar

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

$$\bullet \ (a\vec{u}) \bullet \vec{v} = a(\vec{u} \bullet \vec{v})$$

$$\qquad \qquad (\vec{u} + \vec{v}) \bullet \vec{w} = \vec{u} \bullet \vec{w} + \vec{v} \bullet \vec{w}$$

$$\vec{v} \cdot \vec{v} \cdot \vec{v} \geq 0$$

$$\vec{v} \cdot \vec{v} = 0 \leftrightarrow \vec{v} = \vec{0}$$

• Matrix notation: $\vec{u} \bullet \vec{v} = U^T V = u_{\alpha} v^{\alpha}$

- Also called inner product
 - $\vec{u} \bullet \vec{v}$ is a scalar

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

$$\bullet \ (a\vec{u}) \bullet \vec{v} = a(\vec{u} \bullet \vec{v})$$

$$(\vec{u} + \vec{v}) \bullet \vec{w} = \vec{u} \bullet \vec{w} + \vec{v} \bullet \vec{w}$$

$$\vec{v} \cdot \vec{v} \cdot \vec{v} \geq 0$$

$$\vec{v} \cdot \vec{v} = 0 \leftrightarrow \vec{v} = \vec{0}$$

• Matrix notation: $\vec{u} \bullet \vec{v} = U^T V = u_{\alpha} v^{\alpha}$

- Also called inner product
 - $\vec{u} \cdot \vec{v}$ is a scalar

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

$$\bullet \ (a\vec{u}) \bullet \vec{v} = a(\vec{u} \bullet \vec{v})$$

$$(\vec{u} + \vec{v}) \bullet \vec{w} = \vec{u} \bullet \vec{w} + \vec{v} \bullet \vec{w}$$

$$\vec{v} \cdot \vec{v} \ge 0$$

$$\vec{v} \cdot \vec{v} = 0 \leftrightarrow \vec{v} = \vec{0}$$

▶ Matrix notation: $\vec{u} \bullet \vec{v} = U^T V = u_\alpha v^\alpha$

- Also called inner product
 - $\vec{u} \cdot \vec{v}$ is a scalar

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

$$\bullet \ (a\vec{u}) \bullet \vec{v} = a(\vec{u} \bullet \vec{v})$$

$$(\vec{u} + \vec{v}) \bullet \vec{w} = \vec{u} \bullet \vec{w} + \vec{v} \bullet \vec{w}$$

$$\vec{v} \cdot \vec{v} \ge 0$$

$$\vec{v} \cdot \vec{v} = 0 \leftrightarrow \vec{v} = \vec{0}$$

► Matrix notation: $\vec{u} \bullet \vec{v} = U^T V = u_\alpha v^\alpha$

- Also called inner product
 - $\vec{u} \cdot \vec{v}$ is a scalar

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

$$\bullet \ (a\vec{u}) \bullet \vec{v} = a(\vec{u} \bullet \vec{v})$$

$$(\vec{u} + \vec{v}) \bullet \vec{w} = \vec{u} \bullet \vec{w} + \vec{v} \bullet \vec{w}$$

$$\vec{v} \cdot \vec{v} \ge 0$$

$$\vec{v} \cdot \vec{v} \cdot \vec{v} = 0 \leftrightarrow \vec{v} = \vec{0}$$

▶ Matrix notation:
$$\vec{u} \bullet \vec{v} = U^T V = u_\alpha v^\alpha$$

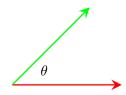
- $\vec{v} \cdot \vec{v} \cdot \vec{v} = |\vec{v}|^2$
- $\qquad \qquad \vec{u} \bullet \vec{v} = |\vec{u}||\vec{v}|\cos\theta$
 - ▶ Defines angle θ !
 - $|ec{v}|=1$, gives projection of $ec{u}$ onto $ec{v}$
 - If |u| = |v| = 1, gives just $\cos \theta$

- $\vec{v} \cdot \vec{v} \cdot \vec{v} = |\vec{v}|^2$
- $\vec{u} \bullet \vec{v} = |\vec{u}||\vec{v}|\cos\theta$
 - ▶ Defines angle θ !
 - If $|ec{v}|=1$, gives projection of $ec{u}$ onto $ec{v}$
 - If $|\vec{u}| = |\vec{v}| = 1$, gives just $\cos \theta$

- $\vec{v} \cdot \vec{v} \cdot \vec{v} = |\vec{v}|^2$
- - ▶ Defines angle θ !
 - If $|\vec{v}| = 1$, gives projection of \vec{u} onto \vec{v}
 - If $|\vec{u}| = |\vec{v}| = 1$, gives just $\cos \theta$

- $\vec{v} \cdot \vec{v} \cdot \vec{v} = |\vec{v}|^2$
- $\vec{u} \bullet \vec{v} = |\vec{u}||\vec{v}|\cos\theta$
 - ▶ Defines angle θ !
 - If $|\vec{v}| = 1$, gives projection of \vec{u} onto \vec{v}
 - If $|\vec{u}| = |\vec{v}| = 1$, gives just $\cos \theta$

- $\vec{v} \cdot \vec{v} \cdot \vec{v} = |\vec{v}|^2$
- $\vec{u} \bullet \vec{v} = |\vec{u}||\vec{v}|\cos\theta$
 - ▶ Defines angle θ !
 - If $|\vec{v}|=1$, gives projection of \vec{u} onto \vec{v}
 - If $|\vec{u}| = |\vec{v}| = 1$, gives just $\cos \theta$



Orthogonal & Normal

- Orthogonal = perpendicular: $\vec{u} \cdot \vec{v} = 0$
- Normal (this usage) = unit-length: $\vec{u} \bullet \vec{u} = 1$
- Orthonormal: set of vectors both orthogonal and normal
- Orthogonal matrix: rows (& columns) orthonormal

- Orthogonal = perpendicular: $\vec{u} \bullet \vec{v} = 0$
- ▶ Normal (this usage) = unit-length: $\vec{u} \bullet \vec{u} = 1$
- Orthonormal: set of vectors both orthogonal and normal
- Orthogonal matrix: rows (& columns) orthonormal

- Orthogonal = perpendicular: $\vec{u} \cdot \vec{v} = 0$
- ▶ Normal (this usage) = unit-length: $\vec{u} \bullet \vec{u} = 1$
- Orthonormal: set of vectors both orthogonal and normal
- Orthogonal matrix: rows (& columns) orthonormal

- Orthogonal = perpendicular: $\vec{u} \cdot \vec{v} = 0$
- ► Normal (this usage) = unit-length: $\vec{u} \bullet \vec{u} = 1$
- Orthonormal: set of vectors both orthogonal and normal
- Orthogonal matrix: rows (& columns) orthonormal
 - ▶ For orthogonal matrices, $A^{-1} = A^T$

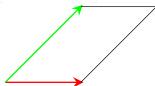
- Orthogonal = perpendicular: $\vec{u} \cdot \vec{v} = 0$
- ▶ Normal (this usage) = unit-length: $\vec{u} \bullet \vec{u} = 1$
- Orthonormal: set of vectors both orthogonal and normal
- Orthogonal matrix: rows (& columns) orthonormal
 - ▶ For orthogonal matrices, $A^{-1} = A^T$

- ▶ length = area of parallelogram = twice area of triangle ||u|| < |u|| < |u|
- direction = perpendicular to \vec{u} and \vec{v} (right hand rule)

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{vmatrix} U \quad V \quad = \begin{bmatrix} u^1 v^2 - u^2 v^1 \\ u^2 v^0 - u^0 v^2 \\ u^0 v^1 - u^1 v^0 \end{bmatrix}$$

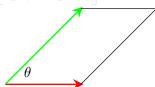
- ▶ length = area of parallelogram = twice area of triangle
 - $|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|\sin(\theta)$
- direction = perpendicular to \vec{u} and \vec{v} (right hand rule)

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{vmatrix} U V = \begin{bmatrix} u^1 v^2 - u^2 v^1 \\ u^2 v^0 - u^0 v^2 \\ u^0 v^1 - u^1 v^0 \end{bmatrix}$$



- ▶ length = area of parallelogram = twice area of triangle
 - $|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|\sin(\theta)$
- direction = perpendicular to \vec{u} and \vec{v} (right hand rule)

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} \\ \hat{j} & U & V \end{vmatrix} = \begin{bmatrix} u^1 v^2 - u^2 v^1 \\ u^2 v^0 - u^0 v^2 \\ u^0 v^1 - u^1 v^0 \end{bmatrix}$$



- ▶ length = area of parallelogram = twice area of triangle
 - $|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|\sin(\theta)$
- direction = perpendicular to \vec{u} and \vec{v} (right hand rule)

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} \\ \hat{j} & U & V \end{vmatrix} = \begin{bmatrix} u^1 v^2 - u^2 v^1 \\ u^2 v^0 - u^0 v^2 \\ u^0 v^1 - u^1 v^0 \end{bmatrix}$$

$$\vec{u} \times \vec{v}$$

- ▶ length = area of parallelogram = twice area of triangle
 - $|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|\sin(\theta)$
- direction = perpendicular to \vec{u} and \vec{v} (right hand rule)

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{vmatrix} U V = \begin{bmatrix} u^1 v^2 - u^2 v^1 \\ u^2 v^0 - u^0 v^2 \\ u^0 v^1 - u^1 v^0 \end{bmatrix}$$

Vectors **u**, **v**, **w**▶ Gram-Schmidt

 Gram-Schmidt Orthogonalization (any dimension)

 $\mathbf{v}' = \vec{u}'$

 $\triangleright \vec{w}' = \vec{w} - \vec{v}' \frac{\vec{w} \cdot \vec{w}'}{\vec{v}'} - \vec{v}' \frac{\vec{w} \cdot \vec{v}'}{\vec{v}'}$

Vectors \vec{u} , \vec{v} , \vec{w} Gram-Schmidt
Orthogonalization (any dimension)

$$\vec{u}' = \vec{u}$$

$$\triangleright \vec{w}' = \vec{w} - \vec{u}' \frac{\vec{w} \bullet \vec{u}'}{\vec{u}' \bullet \vec{u}'} - \vec{v}' \frac{\vec{w} \bullet \vec{v}'}{\vec{v}' \bullet \vec{v}'}$$

Vectors \vec{u} , \vec{v} , \vec{w} Gram-Schmidt
Orthogonalization (any dimension)

$$\vec{u'} = \vec{u}$$

Vectors \vec{u} , \vec{v} , \vec{w} Gram-Schmidt

Orthogonalization (any dimension)

$$\vec{u'} = \vec{u}$$

$$\vec{v'} = \vec{v} - \hat{u'} \quad (\vec{v} \bullet \hat{u'})$$

 $\qquad \qquad \mathbf{W}' = \vec{\mathbf{W}} - \vec{\mathbf{U}}' \frac{\vec{\mathbf{W}} \bullet \mathbf{U}'}{\vec{\mathbf{U}}' \bullet \vec{\mathbf{U}}'} - \vec{\mathbf{V}}' \frac{\vec{\mathbf{W}} \bullet \mathbf{V}'}{\vec{\mathbf{V}}' \bullet \vec{\mathbf{V}}'}$

Vectors \vec{u} , \vec{v} , \vec{w} Gram-Schmidt

Orthogonalization (any dimension)

$$\vec{v'} = \vec{u}$$

$$\vec{v'} = \vec{v} - \frac{\vec{u'}}{|\vec{u'}|} \left(\vec{v} \bullet \frac{\vec{u'}}{|\vec{u'}|} \right)$$

Vectors \vec{u} , \vec{v} , \vec{w} • Gram-Schmidt Orthogonalization (any dimension)

$$\vec{u'} = \vec{u}$$

$$\vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{|\vec{u'}|^2}$$

$$\vec{w'} = \vec{w} - \vec{u'} \frac{\vec{w} \cdot \vec{u'}}{|\vec{u'} \cdot \vec{u'}|} - \vec{v'} \frac{\vec{w} \cdot \vec{v'}}{|\vec{v'} \cdot \vec{v'}|}$$

$$\overrightarrow{w'} = \overrightarrow{w} - \overrightarrow{u'} \frac{\overrightarrow{w} \bullet \overrightarrow{u'}}{\overrightarrow{u'} \bullet \overrightarrow{u'}} - \overrightarrow{v'} \frac{\overrightarrow{w} \bullet \overrightarrow{v'}}{\overrightarrow{v'} \bullet \overrightarrow{v'}}$$

Vectors \vec{u} , \vec{v} , \vec{w} • Gram-Schmidt Orthogonalization (any dimension)

$$\begin{aligned} & \blacktriangleright & \vec{u'} = \vec{u} \\ & \blacktriangleright & \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \bullet \vec{u'}}{\vec{u'} \bullet \vec{u'}} \\ & \blacktriangleright & \vec{w'} = \vec{w} - \vec{u'} \frac{\vec{w} \bullet \vec{u'}}{\vec{u'} \bullet \vec{u'}} - \vec{v'} \frac{\vec{w} \bullet \vec{v'}}{\vec{v'} \bullet \vec{v'}} \end{aligned}$$

Vectors \vec{u} , \vec{v} , \vec{w} Gram-Schmidt

Orthogonalization (any dimension)

$$\vec{v}' = \vec{u}$$

$$\vec{v}' = \vec{v} - \vec{u'} \frac{\vec{v} \bullet \vec{u'}}{\vec{u'} \bullet \vec{u'}}$$

$$\vec{w}' = \vec{w} - \vec{u'} \frac{\vec{w} \bullet \vec{u'}}{\vec{v}' \bullet \vec{u'}} - \vec{v'} \frac{\vec{w} \bullet \vec{v'}}{\vec{v'} \bullet \vec{v'}}$$

Vectors \vec{u} , \vec{v} , \vec{w} • Gram-Schmidt Orthogonalization (any dimension)

$$\vec{v}' = \vec{u}$$

$$\vec{v}' = \vec{v} - \vec{u}' \frac{\vec{v} \cdot \vec{u}'}{\vec{u}' \cdot \vec{v} \cdot \vec{u}'}$$

$$\vec{w}' = \vec{w} - \vec{u}' \frac{\vec{w} \cdot \vec{u}'}{\vec{u}' \cdot \vec{v} \cdot \vec{u}'} - \vec{v}' \frac{\vec{w} \cdot \vec{v}'}{\vec{v}' \cdot \vec{v}'}$$

$$\vec{w'} = \vec{w} - \vec{u'} \frac{\vec{w} \cdot \vec{u'}}{\vec{u'} \cdot \vec{u'}} - \vec{v'} \frac{\vec{w} \cdot \vec{v'}}{\vec{v'} \cdot \vec{v'}}$$

Vectors \vec{u} , \vec{v} , \vec{w} • Gram-Schmidt

Orthogonalization (any dimension)

$$\vec{v'} = \vec{u}$$

$$\vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \bullet \vec{u}}{\vec{u'} \bullet \vec{u}}$$

$$\vec{u'} = \vec{u}$$

$$\vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{\vec{u'} \cdot \vec{v'}}$$

$$\vec{w'} = \vec{w} - \vec{u'} \frac{\vec{w} \cdot \vec{u'}}{\vec{u'} \cdot \vec{u'}} - \vec{v'} \frac{\vec{w} \cdot \vec{v'}}{\vec{v'} \cdot \vec{v'}}$$

$$\vec{u'} = \vec{u}$$

$$\vec{v}' = \vec{w} \times \vec{u}$$

$$\mathbf{w}' = \mathbf{u}' \times \mathbf{v}'$$

Vectors \vec{u} , \vec{v} , \vec{w} • Gram-Schmidt Orthogonalization (any dimension)

$$\vec{v}' = \vec{u}$$

$$\vec{v}' = \vec{v} - \vec{u'} \frac{\vec{v} \bullet \vec{u'}}{\vec{u'} \bullet \vec{u'}}$$

$$\vec{w}' = \vec{w} - \vec{u'} \frac{\vec{w} \bullet \vec{u'}}{\vec{v'} \bullet \vec{u'}} - \vec{v'} \frac{\vec{w} \bullet \vec{v'}}{\vec{v'} \bullet \vec{v'}}$$

$$\vec{w'} = \vec{w} - \vec{u'} \frac{\vec{w} \cdot \vec{u'}}{\vec{u'} \cdot \vec{u'}} - \vec{v'} \frac{\vec{w} \cdot \vec{v'}}{\vec{v'} \cdot \vec{v'}}$$

$$\vec{u'} = \vec{u}$$

$$\vec{v}' = \vec{w} \times \vec{u'}$$

$$\mathbf{v}' = \vec{u'} \times \vec{v'}$$

Vectors \vec{u} , \vec{v} , \vec{w} • Gram-Schmidt

- Orthogonalization (any dimension)

 - $\vec{v}' = \vec{u}$ $\vec{v}' = \vec{v} \vec{u'} \frac{\vec{v} \bullet \vec{u'}}{\vec{u'} \bullet \vec{u'}}$ $\vec{w}' = \vec{w} \vec{u'} \frac{\vec{w} \bullet \vec{u'}}{\vec{v'} \bullet \vec{u'}} \vec{v'} \frac{\vec{w} \bullet \vec{v'}}{\vec{v'} \bullet \vec{v'}}$
- Cross-product (3D only)
 - $\vec{u'} = \vec{u}$
 - $\vec{v}' = \vec{w} \times \vec{u'}$

Vectors \vec{u} , \vec{v} , \vec{w} • Gram-Schmidt

- Orthogonalization (any dimension)

 - $\vec{v}' = \vec{u}$ $\vec{v}' = \vec{v} \vec{u'} \frac{\vec{v} \bullet \vec{u'}}{\vec{u'} \bullet \vec{u'}}$ $\vec{w}' = \vec{w} \vec{u'} \frac{\vec{w} \bullet \vec{u'}}{\vec{v'} \bullet \vec{u'}} \vec{v'} \frac{\vec{w} \bullet \vec{v'}}{\vec{v'} \bullet \vec{v'}}$
- Cross-product (3D only)
 - $\vec{u}' = \vec{u}$
 - $\vec{v'} = \vec{w} \times \vec{u'}$
 - $\vec{w'} = \vec{u'} \times \vec{v'}$

Vectors \vec{u} , \vec{v} , \vec{w} • Gram-Schmidt

- Orthogonalization (any dimension)

 - $\vec{v}' = \vec{u}$ $\vec{v}' = \vec{v} \vec{u'} \frac{\vec{v} \bullet \vec{u'}}{\vec{u'} \bullet \vec{u'}}$ $\vec{w}' = \vec{w} \vec{u'} \frac{\vec{w} \bullet \vec{u'}}{\vec{v'} \bullet \vec{u'}} \vec{v'} \frac{\vec{w} \bullet \vec{v'}}{\vec{v'} \bullet \vec{v'}}$
- Cross-product (3D only)
 - $\vec{u}' = \vec{u}$
 - $\vec{v'} = \vec{w} \times \vec{u'}$
 - $\vec{w'} = \vec{u'} \times \vec{v'}$

