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Vector as linear combination of basis vectors

> \7:2?+1]:[2]

v
<{
Il
—_
3>
+
N
>
Il
| —
=
—_ 1

v
0O
<2
c
3
5
<{
Il
| —
= o
—_
—~
=
(D-
c
I
c
o
<
c
I
o
—+
=
(%]
c
-~
3
N—r

u]
o)
I
i
it




Vectors

|—Matrices
Matrices
0 .0
as a )
» Matrix: A = (1) i = [ i
dp 91



Vectors

[ Matrices

Matrices
. a3
» Matrix: A = .
dp

» Transpose: AT = [

9
a
0
dp

0
9

1
@ |
L=
a

g



Vectors

L Matrices

Matrices

0 0

. aO al ;
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» Also called inner product

> eV isascalar
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Dot Product as Norm

> \70\7:|\7\2
> eV =|d||V|cosf
» Defines angle 6!

» If |V| =1, gives projection of i onto V

» If |d| = |V| = 1, gives just cos§

Y



Vectors

|—Dot Product

Orthogonal & Normal

» Orthogonal = perpendicular: e v =10



Vectors

|—Dot Product

Orthogonal & Normal

» Orthogonal = perpendicular: e v =10

» Normal (this usage) = unit-length: de i =1



Vectors

|—Dot Product

Orthogonal & Normal

» Orthogonal = perpendicular: e v =10

» Normal (this usage) = unit-length: de i =1

» Orthonormal: set of vectors both orthogonal and normal




Vectors
L Dot Product

Orthogonal & Normal

v

Orthogonal = perpendicular: e v =10

v

Normal (this usage) = unit-length: de i =1

v

Orthonormal: set of vectors both orthogonal and normal

v

Orthogonal matrix: rows (& columns) orthonormal



Vectors
L Dot Product

Orthogonal & Normal

v

Orthogonal = perpendicular: e v =10

v

Normal (this usage) = unit-length: de i =1

v

Orthonormal: set of vectors both orthogonal and normal

v

Orthogonal matrix: rows (& columns) orthonormal
» For orthogonal matrices, A~ = AT
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3D Cross Product
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