CMSC 435/634

Global and Local Illumination

Local Illumination

Interpolation

-Global and Local Illumination

Global and Local Illumination

Local Illumination

Interpolation

-Global and Local Illumination

Illumination

- Effect of light on objects
- Mostly look just at intensity
 - Apply to each color channel independently

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Good for most objects
 - Not fluorescent
 - Not phosphorescent

-Global and Local Illumination

Local vs. Global

- Local
 - Light sources shining directly on object
- Global
 - Lights bouncing from objects onto other objects
 - Ambient Illumination
 - Approximate global illumination as constant color

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $\blacktriangleright\,$ Typically \sim 1% of direct illumination

Global and Local Illumination

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Local Illumination BRDF Rendering Equation Models

Interpolation

1					. •		-		٠	-		
l	I	I	u	n	11	n	a	τ	I	о	n	

BRDF

Bidirectional Reflectance Distribution Function How much light reflects from L_i to L_o Surface normal \hat{L}_i Incoming radiance

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

-Local Illumination

Physically Plausible BRDF

- Positive
- Reciprocity
 - Same light from L_i to L_o as from L_o to L_i
- Conservation of Energy
 - Don't reflect more energy than comes in

−Local Illumination □BRDF

Plotting BRDFs

- Polar plot of reflectance strength
 - ► For **one** view direction, showing light directions
 - For one light direction, showing view directions
- Reciprocity same if you swap view and light

Rendering Equation

Rendering Equation

Integral of all Incoming Light

$$L_o(\hat{v}) = \int_{\Omega(\hat{n})} f_r(\hat{v}, \hat{l}) L_i(\hat{l}) \, \hat{n} \cdot \hat{l} \, d\omega(\hat{l})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Rendering Equation

Rendering Equation

Integral of all Incoming Light

$$L_{o}(\hat{v}) = \int_{\Omega(\hat{n})} f_{r}(\hat{v}, \hat{l}) L_{i}(\hat{l}) \,\hat{n} \cdot \hat{l} \, d\omega(\hat{l})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Parts of this equation:

 $L_o(\hat{v})$ outgoing light in direction \hat{v}

-Rendering Equation

Rendering Equation

Integral of all Incoming Light

$$L_{o}(\hat{v}) = \int_{\Omega(\hat{n})} f_{r}(\hat{v}, \hat{l}) L_{i}(\hat{l}) \,\hat{n} \cdot \hat{l} \, d\omega(\hat{l})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Parts of this equation:

 $\begin{array}{ll} L_o(\hat{v}) & \quad \text{outgoing light in direction } \hat{v} \\ \Omega(\hat{n}) & \quad \text{hemisphere above } \hat{n} \end{array}$

-Rendering Equation

Rendering Equation

Integral of all Incoming Light

$$L_{o}(\hat{v}) = \int_{\Omega(\hat{n})} f_{r}(\hat{v}, \hat{l}) L_{i}(\hat{l}) \,\hat{n} \cdot \hat{l} \, d\omega(\hat{l})$$

Parts of this equation:

 $\begin{array}{ll} L_o(\hat{v}) & \text{outgoing light in direction } \hat{v} \\ \Omega(\hat{n}) & \text{hemisphere above } \hat{n} \\ f_r(\hat{v}, \hat{l}) & \text{BRDF from } \hat{l} \text{ to } \hat{v} \end{array}$

-Rendering Equation

Rendering Equation

Integral of all Incoming Light

$$L_{o}(\hat{v}) = \int_{\Omega(\hat{n})} f_{r}(\hat{v}, \hat{l}) L_{i}(\hat{l}) \,\hat{n} \cdot \hat{l} \, d\omega(\hat{l})$$

Parts of this equation:

 $\begin{array}{ll} L_o(\hat{v}) & \text{outgoing light in direction } \hat{v} \\ \Omega(\hat{n}) & \text{hemisphere above } \hat{n} \\ f_r(\hat{v}, \hat{l}) & \text{BRDF from } \hat{l} \text{ to } \hat{v} \\ L_i(\hat{l}) & \text{incoming light from direction } \hat{l} \end{array}$

- Rendering Equation

Rendering Equation

Integral of all Incoming Light

$$L_{o}(\hat{v}) = \int_{\Omega(\hat{n})} f_{r}(\hat{v}, \hat{l}) L_{i}(\hat{l}) \,\hat{n} \cdot \hat{l} \, d\omega(\hat{l})$$

Parts of this equation:

 $\begin{array}{lll} L_o(\hat{v}) & \text{outgoing light in direction } \hat{v} \\ \Omega(\hat{n}) & \text{hemisphere above } \hat{n} \\ f_r(\hat{v}, \hat{l}) & \text{BRDF from } \hat{l} \text{ to } \hat{v} \\ L_i(\hat{l}) & \text{incoming light from direction } \hat{l} \\ \hat{n} \cdot \hat{l} d\omega(\hat{l}) & \text{projection of differential solid angle onto surface} \end{array}$

-Local Illumination

Rendering Equation

Rendering Equation for Point Lights

Sum for Each Light

$$L_o(\hat{v}) = \sum_i f_r(\hat{v}, \hat{l}_i) L_i \, \hat{n} \cdot \hat{l}_i$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Parts of this equation:

 $L_o(\hat{v})$ outgoing light in direction \hat{v}

-Local Illumination

Rendering Equation

Rendering Equation for Point Lights

Sum for Each Light

$$L_o(\hat{v}) = \sum_i f_r(\hat{v}, \hat{l}_i) L_i \, \hat{n} \cdot \hat{l}_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Parts of this equation:

$$\begin{array}{ll} L_o(\hat{v}) & \text{outgoing light in direction } \hat{v} \\ f_r(\hat{v}, \hat{l}) & \text{BRDF from } \hat{l} \text{ to } \hat{v} \end{array}$$

-Local Illumination

-Rendering Equation

Rendering Equation for Point Lights

Sum for Each Light

$$L_o(\hat{v}) = \sum_i f_r(\hat{v}, \hat{l}_i) L_i \, \hat{n} \cdot \hat{l}_i$$

Parts of this equation:

 $\begin{array}{ll} L_o(\hat{v}) & \text{outgoing light in direction } \hat{v} \\ f_r(\hat{v}, \hat{l}) & \text{BRDF from } \hat{l} \text{ to } \hat{v} \\ L_i & \text{incoming light intensity for light } i \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

-Rendering Equation

Rendering Equation for Point Lights

Sum for Each Light

$$L_o(\hat{v}) = \sum_i f_r(\hat{v}, \hat{l}_i) L_i \, \hat{n} \cdot \hat{l}_i$$

Parts of this equation:

 $\begin{array}{ll} L_o(\hat{v}) & \text{outgoing light in direction } \hat{v} \\ f_r(\hat{v}, \hat{l}) & \text{BRDF from } \hat{l} \text{ to } \hat{v} \\ L_i & \text{incoming light intensity for light } i \\ \hat{l}_i & \text{incoming light direction for light } i \end{array}$

-Local Illumination

-Rendering Equation

Results

- Integrating full environment
- Light at one point, black elsewhere

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

-Local Illumination

-Rendering Equation

Results

- Integrating full environment
- Light at one point, black elsewhere

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

-Local Illumination

-Rendering Equation

- Decompose BRDF into convenient parts
- Typical breakdown:
 - Diffuse (view independent)
 - Specular (view dependent near reflection)
 - Others less common, often ignored (e.g. retro reflection)

-Local Illumination

-Rendering Equation

- Decompose BRDF into convenient parts
- Typical breakdown:
 - Diffuse (view independent)
 - Specular (view dependent near reflection)
 - Others less common, often ignored (e.g. retro reflection)

-Local Illumination

-Rendering Equation

- Decompose BRDF into convenient parts
- Typical breakdown:
 - Diffuse (view independent)
 - Specular (view dependent near reflection)
 - Others less common, often ignored (e.g. retro reflection)

-Local Illumination

-Rendering Equation

- Decompose BRDF into convenient parts
- Typical breakdown:
 - Diffuse (view independent)
 - Specular (view dependent near reflection)
 - Others less common, often ignored (e.g. retro reflection)

Important directions

n: Unit surface normal

		•		. •	
	m	110	13	ŧ.	nn
ıu			c	u	UII

- Models

Important directions

 \hat{v} : Unit vector from surface toward viewer

- Models

Important directions

 $\hat{\textit{l}}:$ Unit vector from surface toward light

- Models

Important directions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Models

Important directions

 $\hat{R}_l = 2\hat{n}(\hat{n} \cdot \hat{l}) - \hat{l}$: Direction of mirror reflection of light \hat{n} \hat{R}_l

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

- Models

Important directions

	•											٠			
	L	h	r	r	n	1	1	n	2	Ľ	t	1	n	n	
٠				٠	٠	٠			÷		L	٠	v		

Diffuse

- Also called Lambertian or Matte
- BRDF constant
- Total reflectance: $\sum_{i} Kd L_{i} \hat{n} \cdot \hat{l}_{i}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

••				
п	lun	nin	ati	nn
••	-uii		uu	0.11

Phong

- Strongest where \hat{R}_l lines up with \hat{v} or \hat{R}_v lines up with \hat{l}
- Total reflectance: $\sum_{i} Ks L_i (\hat{R_v} \cdot \hat{l_i})^e$
- BRDF: $(\hat{R_v} \cdot \hat{l_i})^e / (\hat{n} \cdot \hat{l})$
- Non-physical
 - Too much energy; division by $\hat{n} \cdot \hat{l}$ breaks reciprocity

 •	
 umin	ation
 unnin	acion

- Models

Specular Microfacets

- Imagine random mirrored microfacets
- Probability facet has normal \hat{h}
 - Normal Distribution Function (NDF)
- Proportion of light or view blocked (geometry term)
 - Blocked light = shadowing
 - Blocked view = masking
- Fresnel term

				•				
I	ш		m	ın	เล	tı	n	n
•	•••	••••	•••	•••		•••	-	••

Cook-Torrance

- Beckmann Distribution = Gaussian distribution of slope
- Shadow/Mask based on symmetric V-shaped microfacets
- BRDF: $\frac{D(\hat{n},\hat{h}) G(\hat{n},\hat{v},\hat{l}) F(\hat{v},\hat{l})}{\pi \, \hat{n} \cdot \hat{v} \, \hat{n} \cdot \hat{l}},$
- ► Total reflectance: $\sum_{i} Ks \frac{D(\hat{n}, \hat{h}_{i}) G(\hat{n}, \hat{v}, \hat{l}_{i}) F(\hat{v}, \hat{l}_{i})}{\pi \hat{n} \cdot \hat{v}} L_{i}$

Local Illumination

Blinn-Phong

- Alternate formulation for Phong, similar behavior
- Strongest where \hat{h} lines up with \hat{n}
- Total reflectance: $\sum_{i} Ks L_i (\hat{n} \cdot \hat{h}_i)^e$
- Better: think of as NDF
 - Normalize: $\frac{e+2}{2\pi}(\hat{n}\cdot\hat{h}_i)^e$
 - Combine with other terms

$$\blacktriangleright \sum_{i} Ks L_{i} \frac{e+2}{2\pi} (\hat{n} \cdot \hat{h}_{i})^{e} \hat{n} \cdot \hat{l}_{i}$$

- Interpolation

Global and Local Illumination

Local Illumination

Interpolation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

umu	nati	nn
 unn	- uuu	0.1

-Interpolation

When to Compute

- Gouraud Shading = Compute per-vertex & interpolate
 - Lose sharp highlights
 - Subject to Mach banding
- Phong Shading = Interpolate normals & compute per-pixel

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

11	ın	ıır	າລ	tıc	۱n
•••	 •••	•••	•••		

-Interpolation

Phong Shading

> Phong shading can refer to lighting model **or** interpolation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- To save confusion:
 - Phong lighting
 - Phong interpolation