
1

Visibility

2

Given a set of 3D objects and a viewing
specification, determine which lines/surfaces
are visible and display only them
Known as:
- Visible line/surface determination

- Hidden line/surface elimination/removal

8

Start by painting the most distant part of the
scene then paint over with closer objects
- Sort polygons by depth, then paint them in back to

front order

- Paint over parts which are not visible

9

Given
 List of Polygons { P1, P2, ... , PN }
 An array Intensity [x, y]

Begin
 Sort polygon list on minimum Z
 (largest Z-value comes first in sorted list)

 for each polygon P in selected list do
 for each pixel (x, y) that intersects P do
 Intensity [x, y] = intensity of P at (x, y)

 Display Intensity array

10

First polygon:
- (6, 3, 10), (11, 5, 10), (2, 2, 10)

- scan it in

11

Second polygon:
- (1, 2, 8), (12, 2, 8), (12, 6, 8), (1, 6, 8)

- scan it on top

12

Third polygon:
- (6, 5, 5), (14, 5, 5), (14, 10, 5), (6, 10, 5)

- scan it on top

13

What if z values overlap?

14

Split polygon(s) along some line(s) and draw in
correct depth ordering
- Split along line

- Then scan in 1, 2, 3 order

15

Which order to scan?

16

Split along line
Scan in 1, 2, 3, 4 order

17

Good:
- Painters algorithm is easy and fast to compute

- Can handle varying degrees of transparency

Bad:
- Detecting and splitting cycles

- Pixel may get re-colored many times

26

Paint polygons, in addition keep track of the
depth computed for each pixel
- Storage of depth is usually handled in hardware

(graphics card)

- Usually arranged as a 2D array with one element per
screen pixel – called the Z-buffer

- When rendering an object, compare the computed
depth for that pixel against what is in the Z-buffer

If closer, draw pixel, overwrite z-buffer at location with
the new (closer) depth

27

First polygon:
- (1, 1, 5), (7, 7, 5), (1, 7, 5)

- scan it in with depth

28

Second polygon:
- (3, 5, 9), (10, 5, 9), (10, 9, 9), (3, 9, 9)

29

Third polygon:
- (2, 6, 3), (2, 3, 8), (7, 3, 3)

30

Result:

31

Given
 List of Polygons { P1, P2, ... , PN }
 An array z-buffer [x, y] initialized to +infinity
 An array Intensity [x, y]

Begin
 for each polygon P in selected list do
 for each pixel (x, y) that intersects P do
 Calculate z-depth of P at (x, y)
 if z-depth < z-buffer [x, y] then
 Intensity [x, y] = intensity of P at (x, y)
 z-buffer [x, y] = z-depth

 Display Intensity array

32

Good
- Easy to implement

- Requires no sorting of surfaces

- Easy to put in hardware

Bad
- Requires lots of memory

Usually represented at 24bits or 32bits

About 9MB for a 1280 x 1024 display

- Can alias badly (only one sample per pixel)

- Can not handle transparent surfaces

33

Basically z-buffer with additional memory to
consider contribution of multiple surfaces to a
pixel
Store a list with information about surfaces
- Color (RGB triple)

- Opacity

- Depth

- Percent area covered

- Surface ID

- Miscellaneous rendering parameters

- Pointer to next

36

A Binary Space Partitioning (BSP) tree is a
means to divide the scene space
- Pick a polygon from scene, let that be root of tree

- Partition remaining scene in terms of in front or
behind that polygon based on its normal

Any polygon that lies on plane is split, part goes in front,
part goes behind

- Recursively subdivide each sub-tree in same fashion

- Terminate when each subtree contains only a single
node

id Software 37

Early game to use a BSP Tree was “Doom”
- Engine source code since released under the GPL by

id Software

- ftp://ftp.idsoftware.com/idsstuff/

38

Given an initial scene of the following 5 objects

39

Pick a polygon
- Use 3 as root, split on its plane

- Polygon 5 split into 5a and 5b

40

Split left subtree at 2
- 5a is only child in front

- 1 is only child behind

41

Split the right subtree about 4
- 5b is remaining child which is behind 4

42

Remarkably, displaying a BSP is as easy as an
in-order traversal

DisplayBSP(tree)
 if (tree not empty) then
 if (viewer in front of root) then
 DisplayBSP (tree -> back)
 DisplayPolygon (tree -> root)
 DisplayBSP (tree -> front)
 else
 DisplayBSP (tree -> front)
 DisplayPolygon (tree -> root)
 DisplayBSP (tree -> back)

43

Also known as ray casting, is capable of
determining which surfaces are visible at a
given pixel
- We'll revisit ray tracing in more detail next class

General Premise:

for (each scan line) do

 for (each pixel on scan line) do

 for (each object in scene) do

 if (object is intersected and closest seen thus far)
 record intersection and object name
 set pixel color to that at closest intersection

