Vector Math

CMSC 435/634

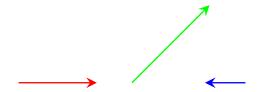
-Abstract Vectors

- $(\vec{u}, \vec{v}, \vec{w} \text{ vectors}; a, b, c \text{ scalars})$
 - $\vec{u} + \vec{v}$ is a vector
 - $a\vec{u}$ is a vector

$$\blacktriangleright \ \vec{u} + \vec{v} = \vec{v} + \vec{u}$$

$$\blacktriangleright (a+b)\vec{u} = a\vec{u} + b\vec{u}$$

•
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$



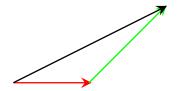
-Abstract Vectors

- $(\vec{u}, \vec{v}, \vec{w} \text{ vectors}; a, b, c \text{ scalars})$
 - $\vec{u} + \vec{v}$ is a vector
 - $a\vec{u}$ is a vector

$$\blacktriangleright \ \vec{u} + \vec{v} = \vec{v} + \vec{u}$$

$$\blacktriangleright (a+b)\vec{u} = a\vec{u} + b\vec{u}$$

•
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$



-Abstract Vectors

- $(\vec{u}, \vec{v}, \vec{w} \text{ vectors}; a, b, c \text{ scalars})$
 - $\vec{u} + \vec{v}$ is a vector
 - $a\vec{u}$ is a vector

$$\blacktriangleright \ \vec{u} + \vec{v} = \vec{v} + \vec{u}$$

$$\blacktriangleright (a+b)\vec{u} = a\vec{u} + b\vec{u}$$

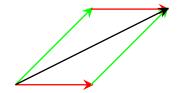
•
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

-Abstract Vectors

- $(\vec{u}, \vec{v}, \vec{w} \text{ vectors}; a, b, c \text{ scalars})$
 - $\vec{u} + \vec{v}$ is a vector
 - $a\vec{u}$ is a vector
 - $\blacktriangleright \vec{u} + \vec{v} = \vec{v} + \vec{u}$

$$\blacktriangleright (a+b)\vec{u} = a\vec{u} + b\vec{u}$$

•
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$



-Abstract Vectors

- $(\vec{u}, \vec{v}, \vec{w} \text{ vectors}; a, b, c \text{ scalars})$
 - $\vec{u} + \vec{v}$ is a vector
 - $a\vec{u}$ is a vector

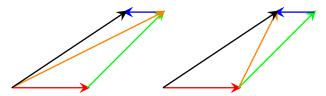
$$\blacktriangleright \ \vec{u} + \vec{v} = \vec{v} + \vec{u}$$

$$\blacktriangleright (a+b)\vec{u} = a\vec{u} + b\vec{u}$$

•
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

- Abstract Vectors

- $(\vec{u}, \vec{v}, \vec{w} \text{ vectors}; a, b, c \text{ scalars})$
 - $\vec{u} + \vec{v}$ is a vector
 - $a\vec{u}$ is a vector
 - $\blacktriangleright \ \vec{u} + \vec{v} = \vec{v} + \vec{u}$
 - $\blacktriangleright (a+b)\vec{u} = a\vec{u} + b\vec{u}$
 - $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$



Basis Vectors

$$\vec{v} = 2\hat{i} + 1\hat{j} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

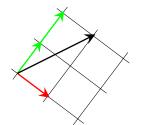
$$\vec{v} = 1\hat{m} + 2\hat{n} = \begin{bmatrix} 1\\2 \end{bmatrix}$$

$$\vec{v} = 1\hat{p} + 1\hat{q} = \begin{bmatrix} 1\\1 \end{bmatrix}$$

Basis Vectors

•
$$\vec{v} = 2\hat{i} + 1\hat{j} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

• $\vec{v} = 1\hat{m} + 2\hat{n} = \begin{bmatrix} 1\\2 \end{bmatrix}$
• $\vec{v} = 1\hat{p} + 1\hat{q} = \begin{bmatrix} 1\\1 \end{bmatrix}$



Basis Vectors

•
$$\vec{v} = 2\hat{i} + 1\hat{j} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

• $\vec{v} = 1\hat{m} + 2\hat{n} = \begin{bmatrix} 1\\2 \end{bmatrix}$
• $\vec{v} = 1\hat{p} + 1\hat{q} = \begin{bmatrix} 1\\1 \end{bmatrix}$

Basis Vectors

•
$$\vec{v} = 2\hat{i} + 1\hat{j} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

• $\vec{v} = 1\hat{m} + 2\hat{n} = \begin{bmatrix} 1\\2 \end{bmatrix}$
• $\vec{v} = 1\hat{p} + 1\hat{q} = \begin{bmatrix} 1\\1 \end{bmatrix}$

- Matrices

Matrices

• Matrix:
$$A = \begin{bmatrix} a_0^0 & a_1^0 \\ a_0^1 & a_1^1 \end{bmatrix} = \begin{bmatrix} a_j^i \end{bmatrix}$$

• Transpose: $A^T = \begin{bmatrix} a_0^0 & a_0^1 \\ a_1^0 & a_1^1 \end{bmatrix} = \begin{bmatrix} a_i^j \end{bmatrix}$
• Multiply: $AB = \begin{bmatrix} a_0^0 & a_1^0 \\ a_0^1 & a_1^1 \end{bmatrix} \begin{bmatrix} b_0^0 & b_1^0 \\ b_0^1 & b_1^1 \end{bmatrix} = \begin{bmatrix} a_0^0 b_1^0 + a_1^0 b_1^1 \\ a_0^1 b_0^0 + a_1^1 b_0^1 & a_0^0 b_1^0 + a_1^1 b_1^1 \end{bmatrix} = \begin{bmatrix} a_\alpha^i b_\beta^\alpha \end{bmatrix}$

- Matrices

Adjoint and Inverse

• Inverse:
$$A^{-1}A = AA^{-1} = I$$

► Determinant: |A|

Dot Product

Dot Product

- Also called inner product
 - $\vec{u} \bullet \vec{v} \text{ is a scalar}$ $\vec{u} \bullet \vec{v} = \vec{v} \bullet \vec{u}$ $(a\vec{u}) \bullet \vec{v} = a(\vec{u} \bullet \vec{v})$ $(\vec{u} + \vec{v}) \bullet \vec{w} = \vec{u} \bullet \vec{w} + \vec{v} \bullet \vec{w}$ $\vec{v} \bullet \vec{v} \ge 0$ $\vec{v} \bullet \vec{v} = 0 \leftrightarrow \vec{v} = \vec{0}$

• Matrix notation: $\vec{u} \bullet \vec{v} = U^T V = u_\alpha v^\alpha$

- Dot Product

Dot Product as Norm

- $\blacktriangleright \vec{v} \bullet \vec{v} = |\vec{v}|^2$
- $\blacktriangleright \vec{u} \bullet \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$
 - Defines angle θ !
 - If $|\vec{v}| = 1$, gives projection of \vec{u} onto \vec{v}
 - If $|\vec{u}| = |\vec{v}| = 1$, gives just $\cos \theta$

- Dot Product

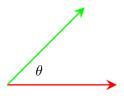
Dot Product as Norm

- $\blacktriangleright \vec{v} \bullet \vec{v} = |\vec{v}|^2$
- $\blacktriangleright \vec{u} \bullet \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$
 - Defines angle θ !
 - If $|\vec{v}| = 1$, gives projection of \vec{u} onto \vec{v}
 - If $|\vec{u}| = |\vec{v}| = 1$, gives just $\cos \theta$

- Dot Product

Dot Product as Norm

- $\blacktriangleright \vec{v} \bullet \vec{v} = |\vec{v}|^2$
- $\blacktriangleright \vec{u} \bullet \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$
 - Defines angle θ !
 - If $|\vec{v}| = 1$, gives projection of \vec{u} onto \vec{v}
 - If $|\vec{u}| = |\vec{v}| = 1$, gives just $\cos \theta$



Dot Product

Orthogonal & Normal

- Orthogonal = perpendicular: $\vec{u} \bullet \vec{v} = 0$
- Normal (this usage) = unit-length: $\vec{u} \bullet \vec{u} = 1$
- Orthonormal: set of vectors both orthogonal and normal
- Orthogonal matrix: rows (& columns) orthonormal
 - For orthogonal matrices, $A^{-1} = A^T$

3D Cross Product

 $\vec{u} \times \vec{v}$

- ▶ length = area of parallelogram = twice area of triangle ▶ $|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin(\theta)$
- direction = perpendicular to \vec{u} and \vec{v} (right hand rule)

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{vmatrix} \quad V \quad V \quad = \begin{bmatrix} u^1 v^2 - u^2 v^1 \\ u^2 v^0 - u^0 v^2 \\ u^0 v^1 - u^1 v^0 \end{bmatrix}$$

Building an Orthogonal Basis

Vectors *ū*, *v*, *w* ► Gram-Schmidt Orthogonalization (any dimension)

$$\vec{u'} = \vec{u} \vec{v'} = \vec{v} - \hat{u'} (\vec{v} \cdot \hat{u'}) \vec{v'} = \vec{v} - \hat{u'} (\vec{v} \cdot \hat{u'}) \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{|\vec{u'}|^2} \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{|\vec{u'}|^2} \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{\vec{u'} \cdot \vec{u'}} \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{\vec{u'} \cdot \vec{u'}} - \vec{v'} \frac{\vec{w} \cdot \vec{v'}}{\vec{v'} \cdot \vec{v'}}$$

$$\vec{u'} = \vec{u}$$

$$\vec{v'} = \vec{w} \times \vec{u'}$$

$$\vec{w'} = \vec{u'} \times \vec{v'}$$

Building an Orthogonal Basis

Vectors *ū*, *v*, *w* ► Gram-Schmidt Orthogonalization (any dimension)

$$\vec{u'} = \vec{u} \vec{v'} = \vec{v} - \hat{u'} (\vec{v} \cdot \hat{u'}) \vec{v'} = \vec{v} - \frac{\vec{u'}}{|\vec{u'}|} (\vec{v} \cdot \frac{\vec{u'}}{|\vec{u'}|}) \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{|\vec{u'}|^2} \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{\vec{u'} \cdot \vec{u'}} \vec{v'} = \vec{w} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{\vec{u'} \cdot \vec{u'}} - \vec{v'} \frac{\vec{w} \cdot \vec{v'}}{\vec{v'} \cdot \vec{v'}}$$

$$\vec{u'} = \vec{u}$$

$$\vec{v'} = \vec{w} \times \vec{u'}$$

$$\vec{w'} = \vec{u'} \times \vec{v'}$$

Building an Orthogonal Basis

Vectors *ū*, *v*, *w* ► Gram-Schmidt Orthogonalization (any dimension)

$$\begin{aligned} \vec{u'} &= \vec{u} \\ \vec{v'} &= \vec{v} - \hat{u'} \quad \left(\vec{v} \bullet \hat{u'} \right) \\ \vec{v'} &= \vec{v} - \frac{\vec{u'}}{|\vec{u'}|} \quad \left(\vec{v} \bullet \frac{\vec{u'}}{|\vec{u'}|} \right) \\ \vec{v'} &= \vec{v} - \vec{u'} \frac{\vec{v} \bullet \vec{u'}}{|\vec{u'}|^2} \\ \vec{v'} &= \vec{v} - \vec{u'} \frac{\vec{v} \bullet \vec{u'}}{\vec{v} \bullet \vec{u'}} \\ \vec{v'} &= \vec{w} - \vec{u'} \frac{\vec{w} \bullet \vec{u'}}{\vec{u'} \bullet \vec{u'}} - \vec{v'} \frac{\vec{w} \bullet \vec{v'}}{\vec{v'} \bullet \vec{v'}} \end{aligned}$$

$$\vec{u'} = \vec{u}$$

$$\vec{v'} = \vec{w} \times \vec{u'}$$

$$\vec{w'} = \vec{u'} \times \vec{v'}$$

Building an Orthogonal Basis

Vectors *ū*, *v*, *w* ► Gram-Schmidt Orthogonalization (any dimension)

$$\vec{u'} = \vec{u} \vec{v'} = \vec{v} - \hat{u'} (\vec{v} \cdot \hat{u'}) \vec{v'} = \vec{v} - \hat{u'} (\vec{v} \cdot \hat{u'}) \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{|\vec{u'}|^2} \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{|\vec{u'}|^2} \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{\vec{u'} \cdot \vec{u'}} \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{\vec{u'} \cdot \vec{u'}} - \vec{v'} \frac{\vec{w} \cdot \vec{v'}}{\vec{v'} \cdot \vec{v'}}$$

$$\vec{u'} = \vec{u}$$

$$\vec{v'} = \vec{w} \times \vec{u'}$$

$$\vec{w'} = \vec{u'} \times \vec{v'}$$

Building an Orthogonal Basis

Vectors *ū*, *v*, *w* ► Gram-Schmidt Orthogonalization (any dimension)

$$\vec{u'} = \vec{u} \vec{v'} = \vec{v} - \hat{u'} (\vec{v} \cdot \hat{u'}) \vec{v'} = \vec{v} - \hat{u'} (\vec{v} \cdot \hat{u'}) \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{|\vec{u'}|^2} \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{|\vec{u'}|^2} \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{\vec{u'} \cdot \vec{u'}} \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{\vec{u'} \cdot \vec{u'}} - \vec{v'} \frac{\vec{w} \cdot \vec{v'}}{\vec{v'} \cdot \vec{v'}}$$

$$\vec{u'} = \vec{u}$$

$$\vec{v'} = \vec{w} \times \vec{u'}$$

$$\vec{w'} = \vec{u'} \times \vec{v'}$$

Building an Orthogonal Basis

Vectors *ū*, *v*, *w* ► Gram-Schmidt Orthogonalization (any dimension)

$$\vec{u'} = \vec{u} \vec{v'} = \vec{v} - \hat{u'} (\vec{v} \cdot \hat{u'}) \vec{v'} = \vec{v} - \hat{u'} (\vec{v} \cdot \hat{u'}) \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{|\vec{u'}|^2} \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{\vec{u'} \cdot \vec{u'}} \vec{v'} = \vec{w} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{\vec{u'} \cdot \vec{u'}} - \vec{v'} \frac{\vec{w} \cdot \vec{v'}}{\vec{v'} \cdot \vec{v'}}$$

$$\vec{u'} = \vec{u}$$

$$\vec{v'} = \vec{w} \times \vec{u'}$$

$$\vec{w'} = \vec{u'} \times \vec{v'}$$

Building an Orthogonal Basis

Vectors *ū*, *v*, *w* ► Gram-Schmidt Orthogonalization (any dimension)

$$\vec{u'} = \vec{u} \vec{v'} = \vec{v} - \hat{u'} (\vec{v} \cdot \hat{u'}) \vec{v'} = \vec{v} - \hat{u'} (\vec{v} \cdot \hat{u'}) \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{|\vec{u'}|^2} \vec{v'} = \vec{v} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{\vec{u'} \cdot \vec{u'}} \vec{v'} = \vec{w} - \vec{u'} \frac{\vec{v} \cdot \vec{u'}}{\vec{u'} \cdot \vec{u'}} - \vec{v'} \frac{\vec{w} \cdot \vec{v'}}{\vec{v'} \cdot \vec{v'}}$$

$$\vec{u'} = \vec{u}$$

$$\vec{v'} = \vec{w} \times \vec{u'}$$

$$\vec{w'} = \vec{u'} \times \vec{v'}$$

