CMSC 435/634

Shading

Procedural Shading

So many options for shading, how to represent? Write a procedure!

- Simple function
- Specialized high-level shading language

Shading Languages

Shade Trees [Cook 84]

- Simple expressions: surface, light, atmosphere
- Built-in vector math & common shading functions

Image Synthesizer [Perlin 86]

- Full language with branch & loop
- Band-limited noise function (more on this in a minute)

RenderMan [Hanrahan & Lawson 90/Pixar]

- C-like language
- Designed to work with many rendering algorithms
- Surface, light, displacement, volume/atmosphere

Shading Example

```
if (mod(trunc(zcomp(P)),2)==0)
  Ci = color(1,0,0);
else
  Ci = color(1,1,1);
```


RenderMan Surface Shaders

Input

- Cs, Os
- u, v, du, dv, s, t
- time, dtime
- P, N, Ng, dPdu, dPdv, dPdtime
- E, I
- L, Cl, Ol (In *illuminance*)

Output

• Ci, Oi

More Complex Example

```
float d = sqrt(
    xcomp(P) *xcomp(P) + ycomp(P) *ycomp(P));
if (mod(trunc(d),2)==0)
    Ci = color(1,0,0);
else
    Ci = color(1,1,1);
```


Repeating Patterns

```
float r1 = mod(x,2)/2; float r2 = sin(x);

Ci = mix(yellow, Ci = mix(yellow, magenta, r1); magenta, r2);
```


Color Tables

Perturbed Color Tables

Ci = texture("rainbow", x+noise(P));

Noise

What is this *noise*?

- "it provides seasoning to help you make things irregular enough so that you can make them look more interesting"
 - Ken Perlin
- Random but repeatable
 - Different arguments give different random values
 - Same argument gives the same value every time
 - Consistency in animation!
- Frequency band-limited (approximately one octave)
 - Control: can choose frequency range by combining several octaves of noise

Lattice/Value Noise

Gradient Noise

Value vs. Gradient

RenderMan noise

Biased to give values centered at .5 rather than 0 float, color or vector output

• inferred, but can force: Ci = float noise(P);

1D, 2D, 3D or 4D

- noise(x)
- noise(x, y)
- float(P)
- noise(P, t)

Periodic version

pnoise(x,y, x_period, y_period)

Noise Frequency & Amplitude

a*noise(f*P)

Simple RenderMan Example

C Code

```
#include "ri.h"
RtPoint Square[4]={
    \{1.4,1,1\},\{1.4,-1,1\},\{-1.4,1,1\},\{-1.4,-1,1\}\};
int main() {
  float noisescale = 4;
  RiBegin("square.rib");
  RiDeclare("sc", "uniform float");
  RiWorldBegin();
  RiSurface ("noisetest", "sc", &noisescale, RI NULL);
  RiPatch (RI BILINEAR, RI P, (RtPointer) Square, RI NULL);
  RiWorldEnd();
    RiEnd();
    return 0;
```

Simple RenderMan Example

SL Code

```
surface noisetest(float sc=1) {
  Ci = float noise(floor(1/t)*sc*P);
}
```


Fractional Brownian Motion (fBm)

Combine octaves, scaled by 1/f

```
for(f=1; f<=floor(1/t); f*=2)
Ci += (float noise(f*sc*P)-.5)/f;</pre>
```

Ci += .5;

Turbulence

fBm using abs(noise)

```
for (f=1; f<=floor (1/t); f*=2)

Ci += abs (float noise (f*sc*P) - .5) / f;
```

Ci += .5;

Marble

texture(xcomp(P)+turbulence(P))

Wood

Concentric rings of dark & light wood Perturbed by noise

Volume/Cloud

Solid ellipse

Noise modifies density

More Atmospheric Effects

