
Ray Tracing

1

2

  Method to produce realistic images
  Determines visible surface at pixel level

- Operates at per-pixel level
- Not at a per-surface level like that of z-buffer or BSP

tree
  Can be rather CPU intensive

3

  Relatively straight-forward to compute shadows
and reflections

  Ability to “pick” the object seen at a pixel
- Could also perform this with other rasterization

techniques if we stored a surface ID

4

  Simplest use is to produce images similar to z-
buffer and BSP trees

  Make sure the appropriate surface is “seen”
through each pixel

  Resultant colored based on:
- Material
- Surface normal
-  Lighting geometry

5

  Geometry is aligned with the origin (eye/
camera) at location e

  The border of the window have simple
coordinates in the uvw coordinate system with
respect to e

6

  Basic idea in ray tracing is to identify
locations on the w = n plane that correspond
to pixel centers

  A ray is just a 3D line from the origin sent
out to that point

7

  We then gaze in the direction of the ray to
see the first object (if any) seen in that
direction

8

compute u, v, w, basis vectors
 for each pixel do
 compute viewing ray
 find first object hit by ray and its surface normal n
 set pixel color to the value based on material, light, n

9

  First, we need to determine a mathematical
representation of a ray
- Ray is just an origin point and a propagation direction
-  3D parametric line is ideal for this

  Line from point e to a point s is
p(t) = e + t(s - e)

10

  First, we find the coordinates of s in the uvw
coordinate system with origin e

  Using a windowing transform yields:

  Where i & j are pixel indices

11

  To convert to canonical coordinates:

  Or, in matrix form

12

  Given a ray e + td we want to find the first
intersection where t > 0

  Smaller values of t indicate closer objects,
whereas larger values of t indicate farther
objects

  If 2 objects are both intersected, the one with
the smallest t value (the closest) is recorded

13

  Given a ray p(t) = e + td and an implicit
surface f(p) = 0, we'd like to know where
they intersect

  Intersection occurs when points satisfy the
implicit equation

f(p(t)) = 0
  This is just

f(e + td) = 0

14

  A sphere with center c = (xc, yc, zc) and radius R
can be represented by the implicit equation

  In vector form

  Any point p that satisfies this equation is on
the sphere.

15

  Plugging in the ray we can solve for the values
of t on the ray which yields points on the sphere

  Rearranging terms yields

  Everything is known except t, so this is a classic
quadratic equation in t, meaning it has form

(e + td− c) · (e + td− c)−R2 = 0

16

  Plugging in the actual terms for t:

  The discriminant (portion under the square root)
determines how many real solutions there are
-  If discriminant is negative, there exists no real

solutions, thus no intersection with sphere
-  If discriminant is positive, there exist 2 real solutions,

ray entry and ray exit
-  If discriminant is zero, there exists a single solution,

ray grazes surface at a single point

17

  The discriminant alone is sufficient for
determining if there is an intersection or not

  Check discriminant first, if negative there is no
intersection
- Abort further computation of the rest of the formula

18

  There are a number of methods for determining
ray-triangle intersection, we'll utilize a
barycentric approach

  If a, b & c are the vertices of triangle we know
that the ray intersects the plane if and only if

19

  The hit point p will be at e + td
  We know that the hit point is inside the

triangle if and only if

  Otherwise, it hits the plane outside of the
triangle

20

  To solve for t, beta and gamma, expand from
vector form into 3 equations (one for each
coordinate)

  Can be rewritten as a standard linear equation

21

  Solve using Cramer's rule

  Where A is

22

  Substituting dummy values

  Re-expressed using Crammer's rule

23

  Substituting dummy values

  Re-expressed using Crammer's rule

t =
j(bf − ec) + k(dc− af) + l(ae− bd)

M

M = g(bf − ec) + h(dc− af) + i(ae− bd)

β =
d(hl − ki) + e(ji− gl) + f(jh− gk)

M

γ = −a(hl − ki) + b(ji− gl) + c(jh− gk)
M

24

  There are a number of efficiencies that can be
introduced
- Solve expressions (such as ei – hf) once and store

them, as they are used again
- Solve for t, if outside of viewing parameters, abort

rest of calculations

25

  Optimized version of the ray-triangle intersection
that has early conditions for termination

boolean raytri(ray r, vector a, vector b, vector c, interval [t0, t1])
 compute t
 if (t < t0) or (t > t1) then
 return false
 compute γ
 if (γ < 0) or (γ > 1) then
 return false
 compute β
 if (β < 0) or (β > 1 – γ) then
 return false
 return true

Call of the Wild - Gilles Tran, Bonsais - Jaime Vives Piqueres 26

  Shadows can easily be added to ray tracers

27

  If we imagine our point on the surface being
shaded, it is in shadow if we look into the
direction of the light and cannot see it
- Rays from p/q to l known as shadow rays
- May be multiple light sources to check against

The Dark Side of the Trees - Gilles Tran, Spheres - Martin K. B. 28

  Mirror-like reflection of light

29

  Key to specular reflection is to viewer looking in
direction d sees whatever the viewer “below”
the surface sees looking in direction r

  In the real world
- Energy loss on the bounce
- Loss different for different colors

glass - Bcrowell, Sphere - László Szirmay-Kalos, Barnabás Aszódi, István Lazányi, Mátyás Premecz 30

  Change in direction of light wave

31

  Change in direction of light due to a change in
speed
- Typically a result of light passing from one medium to

another
  When ray travels from a medium with refractive

index n into one with refractive index nt, some
light is transmitted and bends

32

  Snell's law tells us that
n sin θ = nt sin Φ

  Note that if nt and nt are reversed then the
angles are as well (right side of picture)

33

  Bounding boxes
  Hierarchical bounding boxes
  Uniform spatial subdivision
  Binary space partitioning

34

  Constructive Solid Geometry (CSG)
  Antialiasing
  Soft shadows
  Depth of field
  Glossy
  Motion Blur

