Ray Tracing

- Method to produce realistic images
- Determines visible surface at pixel level
 - Operates at per-pixel level
 - Not at a per-surface level like that of z-buffer or BSP tree
- Can be rather CPU intensive

Benefits

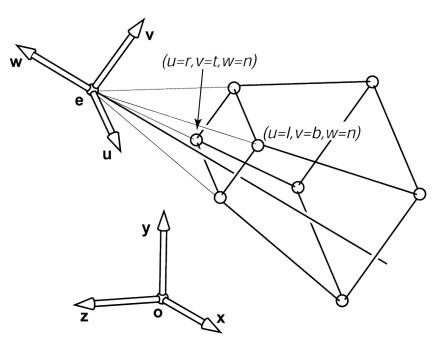
- Relatively straight-forward to compute shadows and reflections
- Ability to "pick" the object seen at a pixel
 - Could also perform this with other rasterization techniques if we stored a surface ID

Basics

- Simplest use is to produce images similar to zbuffer and BSP trees
- Make sure the appropriate surface is "seen" through each pixel
- Resultant colored based on:
 - Material
 - Surface normal
 - Lighting geometry

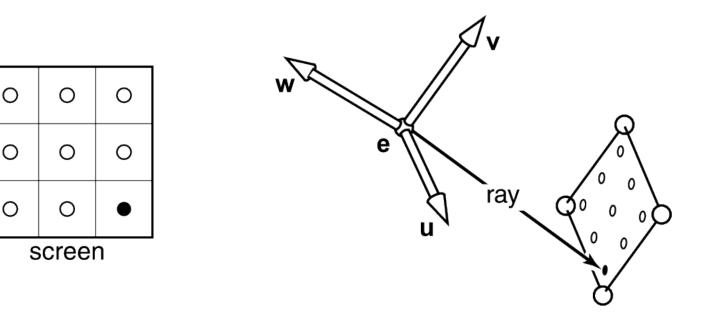
Viewing

- Geometry is aligned with the origin (eye/ camera) at location e
- The border of the window have simple coordinates in the uvw coordinate system with respect to e



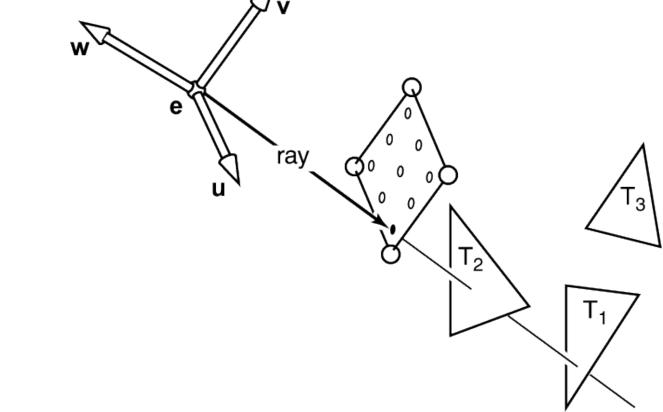
Rays

- Basic idea in ray tracing is to identify locations on the w = n plane that correspond to pixel centers
- A ray is just a 3D line from the origin sent out to that point



Casting Rays

 We then gaze in the direction of the ray to see the first object (if any) seen in that direction

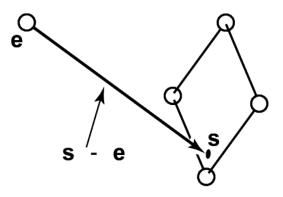


Basic Algorithm

compute *u*, *v*, *w*, basis vectors for each *pixel* do compute viewing *ray* find first object hit by *ray* and its surface normal *n* set *pixel* color to the value based on material, light, n

Computing Viewing Rays

- First, we need to determine a mathematical representation of a ray
 - Ray is just an origin point and a propagation direction
 - 3D parametric line is ideal for this
- Line from point *e* to a point *s is p(t)* = *e* + *t(s e)*



Finding Viewing Pixels

- First, we find the coordinates of s in the uvw coordinate system with origin e
- Using a windowing transform yields:

$$u_{s} = l + (r - l) \frac{i + .5}{n_{x}}$$
$$v_{s} = b + (t - b) \frac{j + .5}{n_{y}}$$

• Where *i* & *j* are pixel indices

Converting to Canonical Coordinates

To convert to canonical coordinates:

$$\mathbf{s} = \mathbf{e} + u_s \mathbf{u} + v_s \mathbf{v} + w_s \mathbf{w}$$

• Or, in matrix form

$$\begin{bmatrix} x_s \\ y_s \\ z_s \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & x_e \\ 0 & 1 & 0 & y_e \\ 0 & 0 & 1 & z_e \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_u & x_v & x_w & 0 \\ y_u & y_v & y_w & 0 \\ z_u & z_v & z_w & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_s \\ v_s \\ w_s \\ 1 \end{bmatrix}$$

Ray-Object Intersection

- Given a ray *e* + *td* we want to find the first intersection where *t* > 0
- Smaller values of t indicate closer objects, whereas larger values of t indicate farther objects
- If 2 objects are both intersected, the one with the smallest t value (the closest) is recorded

- Given a ray p(t) = e + td and an implicit surface f(p) = 0, we'd like to know where they intersect
- Intersection occurs when points satisfy the implicit equation

f(p(t))=0

• This is just

f(e + td) = 0

• A sphere with center $c = (x_c, y_c, z_c)$ and radius *R* can be represented by the implicit equation

$$(x - x_c)^2 + (y - y_c)^2 + (z - z_c)^2 - R^2 = 0$$

In vector form

$$(\mathbf{p} - \mathbf{c}) \cdot (\mathbf{p} - \mathbf{c}) - R^2 = 0$$

 Any point *p* that satisfies this equation is on the sphere.

• **Plugging** in the ray we can solve for the values of t on the ray which yields points on the sphere

$$(\mathbf{e} + t\mathbf{d} - \mathbf{c}) \cdot (\mathbf{e} + t\mathbf{d} - \mathbf{c}) - R^2 = 0$$

- Rearranging terms yields $(\mathbf{d} \cdot \mathbf{d})t^2 + 2\mathbf{d} \cdot (\mathbf{e} - \mathbf{c})t + (\mathbf{e} - \mathbf{c}) - R^2 = 0$
- Everything is known except t, so this is a classic quadratic equation in t, meaning it has form

$$At^2 + Bt + C = 0$$

• Plugging in the actual terms for *t*:

$$t = \frac{-\mathbf{d} \cdot (\mathbf{e} - \mathbf{c}) \pm \sqrt{(\mathbf{d} \cdot (\mathbf{e} - \mathbf{c}))^2 - (\mathbf{d} \cdot \mathbf{d})((\mathbf{e} - \mathbf{c}) \cdot (\mathbf{e} - \mathbf{c}) - R^2)}}{(\mathbf{d} \cdot \mathbf{d})}$$

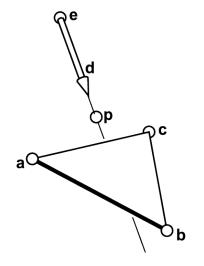
- The discriminant (portion under the square root) determines how many real solutions there are
 - If discriminant is negative, there exists no real solutions, thus no intersection with sphere
 - If discriminant is positive, there exist 2 real solutions, ray entry and ray exit
 - If discriminant is zero, there exists a single solution, ray grazes surface at a single point

Ray-Sphere Intersection Efficiency

- The discriminant alone is sufficient for determining if there is an intersection or not
- Check discriminant first, if negative there is no intersection
 - Abort further computation of the rest of the formula

- There are a number of methods for determining ray-triangle intersection, we'll utilize a barycentric approach
- If *a*, *b* & *c* are the vertices of triangle we know that the ray intersects the plane if and only if

$$\mathbf{e} + t\mathbf{d} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a})$$



- The hit point *p* will be at *e* + *td*
- We know that the hit point is inside the triangle if and only if

$$\beta>0, \gamma>0, \beta+\gamma<1$$

 Otherwise, it hits the plane outside of the triangle

 To solve for t, beta and gamma, expand from vector form into 3 equations (one for each coordinate)

$$x_{e} + tx_{d} = x_{a} + \beta(x_{b} - x_{a}) + \gamma(x_{c} - x_{a})$$

$$y_{e} + ty_{d} = y_{a} + \beta(y_{b} - y_{a}) + \gamma(y_{c} - y_{a})$$

$$z_{e} + tz_{d} = z_{a} + \beta(z_{b} - z_{a}) + \gamma(z_{c} - z_{a})$$

Can be rewritten as a standard linear equation

$$\begin{bmatrix} x_a - x_b & x_a - x_c & x_d \\ y_a - y_b & y_a - y_c & y_d \\ z_a - z_b & z_a - z_c & z_d \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \\ t \end{bmatrix} = \begin{bmatrix} x_a - x_e \\ y_a - y_e \\ z_a - z_e \end{bmatrix}$$

Solve using Cramer's rule

$$\beta = \frac{\begin{vmatrix} x_a - x_e & x_a - x_c & x_d \\ y_a - y_e & y_a - y_c & y_d \\ z_a - z_e & z_a - z_c & z_d \end{vmatrix}}{|A|} \qquad \gamma = \frac{\begin{vmatrix} x_a - x_b & x_a - x_e & x_d \\ y_a - y_b & y_a - y_e & y_d \\ z_a - z_b & z_a - z_e & z_d \end{vmatrix}}{|A|}$$

$$t = \frac{\begin{vmatrix} x_a - x_b & x_a - x_c & x_a - x_e \\ y_a - y_b & y_a - y_c & y_a - y_e \\ z_a - z_b & z_a - z_c & z_a - z_e \end{vmatrix}}{|A|}$$

• Where **A** is

$$A = \begin{bmatrix} x_a - x_b & x_a - x_c & x_d \\ y_a - y_b & y_a - y_c & y_d \\ z_a - z_b & z_a - z_c & z_d \end{bmatrix}$$

Substituting dummy values

$$\begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \\ t \end{bmatrix} = \begin{bmatrix} j \\ k \\ l \end{bmatrix}$$

Re-expressed using Crammer's rule

$$\begin{split} \beta &= \frac{j(ei-hf) + k(gf-di) + l(dh-eg)}{M} \\ \gamma &= \frac{i(ak-jb) + h(jc-al) + g(bl-kc)}{M} \\ t &= -\frac{f(ak-jb) + e(jc-al) + d(bl-kc)}{M} \\ M &= a(ei-hf) + b(gf-di) + c(dh-eg) \end{split}$$

Substituting dummy values

$$\begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \\ t \end{bmatrix} = \begin{bmatrix} j \\ k \\ l \end{bmatrix}$$

Re-expressed using Crammer's rule

$$\begin{split} M &= g(bf - ec) + h(dc - af) + i(ae - bd) \\ t &= \frac{j(bf - ec) + k(dc - af) + l(ae - bd)}{M} \\ \beta &= \frac{d(hl - ki) + e(ji - gl) + f(jh - gk)}{M} \\ \gamma &= -\frac{a(hl - ki) + b(ji - gl) + c(jh - gk)}{M} \end{split}$$

Ray-Triangle Intersection Efficiency

- There are a number of efficiencies that can be introduced
 - Solve expressions (such as ei hf) once and store them, as they are used again
 - Solve for t, if outside of viewing parameters, abort rest of calculations

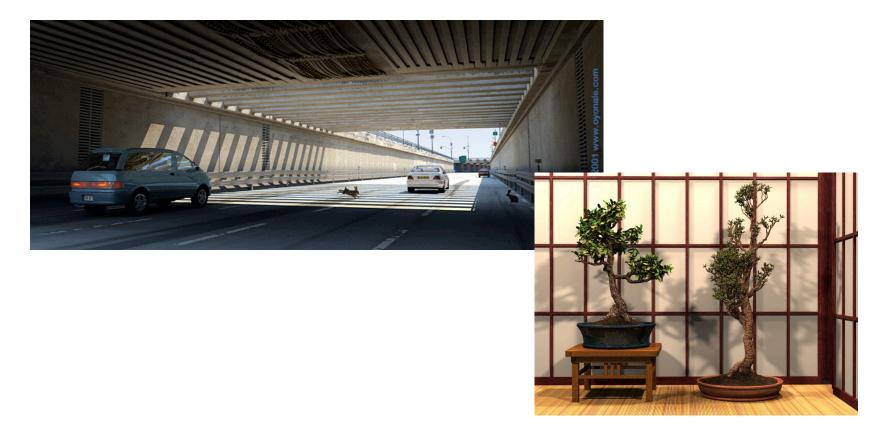
Ray-Triangle Intersection Efficiency

Optimized version of the ray-triangle intersection that has early conditions for termination

```
boolean raytri(ray r, vector a, vector b, vector c, interval [t_0, t_1])
compute t
if (t < t_0) or (t > t_1) then
return false
compute \gamma
if (\gamma < 0) or (\gamma > 1) then
return false
compute \beta
if (\beta < 0) or (\beta > 1 - \gamma) then
return false
return true
```

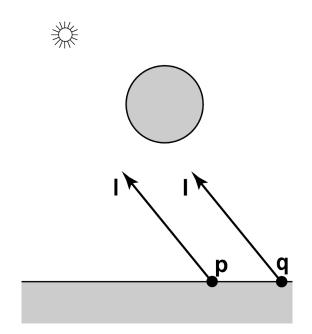
Shadows

Shadows can easily be added to ray tracers



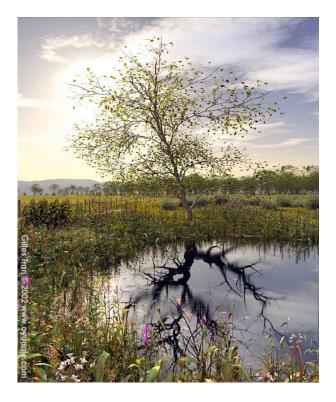
Shadows

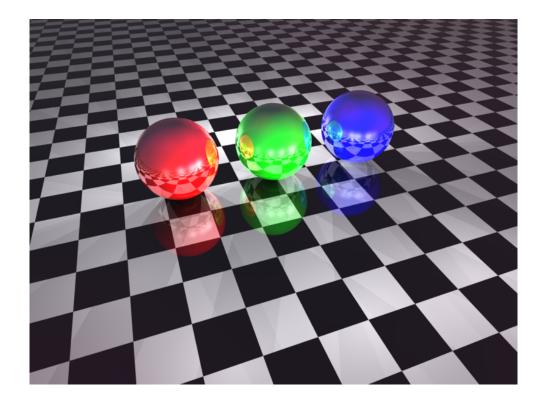
- If we imagine our point on the surface being shaded, it is in shadow if we look into the direction of the light and cannot see it
 - Rays from p/q to I known as shadow rays
 - May be multiple light sources to check against



Specular Reflection

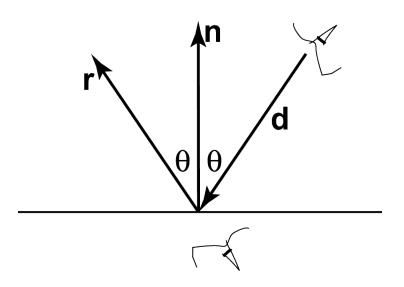
• Mirror-like reflection of light





Specular Reflection

- Key to specular reflection is to viewer looking in direction *d* sees whatever the viewer "below" the surface sees looking in direction r
- In the real world
 - Energy loss on the bounce
 - Loss different for different colors



Refraction

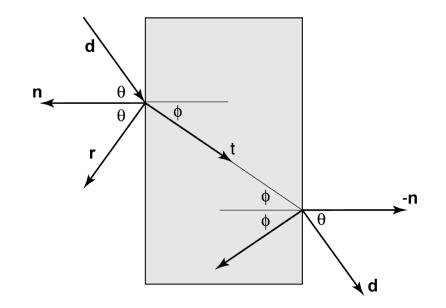
Change in direction of light wave

Refraction

- Change in direction of light due to a change in speed
 - Typically a result of light passing from one medium to another
- When ray travels from a medium with refractive index n into one with refractive index n_t, some light is transmitted and bends

Snell's Law

- Snell's law tells us that
- $n \sin \theta = n_t \sin \Phi$ • Note that if n_t and n_t are reversed then the angles are as well (right side of picture)



Ray Tracing – Optimization

- Bounding boxes
- Hierarchical bounding boxes
- Uniform spatial subdivision
- Binary space partitioning

Additional Features

- Constructive Solid Geometry (CSG)
- Antialiasing
- Soft shadows
- Depth of field
- Glossy
- Motion Blur