Ray Tracing

Overview

« Method to produce realistic images

« Determines visible surface at pixel level
- Operates at per-pixel level

- Not at a per-surface level like that of z-buffer or BSP
tree

« Can be rather CPU intensive

=S

» Relatively straight-forward to compute shadows
and reflections

o Ability to “pick” the object seen at a pixel
- Could also perform this with other rasterization
techniques if we stored a surface ID

« Simplest use is to produce images similar to z-
buffer and BSP trees

« Make sure the appropriate surface is “seen”
through each pixel

« Resultant colored based on:
- Material

- Surface normal
- Lighting geometry

Viewing

« Geometry is aligned with the origin (eye/
camera) at location e

« The border of the window have simple
coordinates in the uvw coordinate system with
respect to e

(u=1,v=b,w=n)

Rays

. Basic idea in ray tracing is to identify
locations on the w = n plane that correspond
to pixel centers

« Aray is just a 3D line from the origin sent
out to that point

olo | o w

O| o | o e 0

O | O | e ray 0 0 ,

screen

Casting Rays

. We then gaze in the direction of the ray to
see the first object (if any) seen in that

direction y
w
e 0
ray 0 0o 0o
u 0
’
T

2
Z

Basic Algorithm

compute u, v, w, basis vectors
for each pixel do
compute viewing ray
find first object hit by ray and its surface normal n
set pixel color to the value based on material, light, n

Computing Viewing Rays

« First, we need to determine a mathematical

representation of a ray
- Ray is just an origin point and a propagation direction

- 3D parametric line is ideal for this

« Line from point eto a point s is
p(t) =e +{(s-e)

Finding Viewing Pixels

 First, we find the coordinates of s in the uvw
coordinate system with origin e
» Using a windowing transform yields:

Us :l+(r—l)in'5

X

vs = b+ (t — b) L2

Yy

« Where / & J are pixel indices

Converting to Canonical Coordinates

o [0 convert to canonical coordinates:

S=e€e—+ UsU + VsV + WsW

« Or, in matrix form

T 1 0 0 z. || zy Ty Ty O] Ug
ys | _ {0 1 0 e Yu Yo Yw O Vs
2z« | 0O 0 1 = Zu 2o 2w O W
1 000 1 [0 0 0 1 1

Ray-Object Intersection

» Given aray e + td we want to find the first
intersection where t > 0

. Smaller values of t indicate closer objects,
whereas larger values of f indicate farther

objects
. If 2 objects are both intersected, the one with

the smallest f value (the closest) is recorded

Ray-Sphere Intersection

« Given aray p(t) = e + td and an implicit
surface f(p) = 0, we'd like to know where
they intersect

. Intersection occurs when points satisfy the
implicit equation

f(p(t) =0

fle+td) =0

o This Is just

Ray-Sphere Intersection

. Asphere with centerc = (x, y, Zf) and radius R
can be represented by the |mpI|C| equation

(# —2e)® + (Y —Ye)? + (2 — 2.)* = R* =0
o In vector form
(p—c)-(p—c)—R*=0

« Any point p that satisfies this equation is on
the sphere.

Ray-Sphere Intersection

« Plugging in the ray we can solve for the values
of t on the ray which yields points on the sphere

(e4+td—c)-(e+td—c)—R*=0
« Rearranging terms yields
(d-d)t?+2d-(e—c)t+(e—c)—R*=0

« Everything is known except t, so this is a classic
quadratic equation in t, meaning it has form

At? + Bt +C =0

Ray-Sphere Intersection

« Plugging in the actual terms for

- —d.(e—c)i\/(d-(e—c))2_(d.d)((e_c).(e_c)_Rg)
- (d-d)

« The discriminant (portion under the square root)

determines how many real solutions there are
- If discriminant is negative, there exists no real
solutions, thus no intersection with sphere

- If discriminant is positive, there exist 2 real solutions,
ray entry and ray exit

- If discriminant is zero, there exists a single solution,
ray grazes surface at a single point

Ray-Sphere Intersection Efficiency

« The discriminant alone is sufficient for
determining if there is an intersection or not
« Check discriminant first, if negative there is no

intersection
- Abort further computation of the rest of the formula

Ray-Triangle Intersection

« There are a number of methods for determining
ray-triangle intersection, we'll utilize a
barycentric approach

. If a, b & ¢ are the vertices of triangle we know
that the ray intersects the plane if and only if

e+td=a+ [B(b—a)+ y(c—a)

Ray-Triangle Intersection

« The hit point p will be at e + td
« We know that the hit point is inside the
triangle if and only if

6>0v>0,0+v<1

« Otherwise, it hits the plane outside of the
triangle

Ray-Triangle Intersection

« T0 solve for t, beta and gamma, expand from
vector form into 3 equations (one for each
coordinate)

Te + g =xo + B(T6 — Ta) + V(T — Ta)
Ye +tYa = Ya + BYb — Ya) + Y (Ye — Ya)
Ze +tzg = 2q + 0B(20 — 24) + V(2e — 24)
« Can be rewritten as a standard linear equation

Tq — Th Ta— Te Xd b, Tq — Te

Ya — Yo Ya — Yec Yd Y| = Ya — Ye
Za — Rb Rgq — R 24 t Zqg — Ze

Ray-Triangle Intersection

« Solve using Cramer's rule

aja, - xe «/,Ea, - Q/L'C xd aja/ - ij aja/ - ZEG ./,Ed
Ya —Ye Ya — Yec Yd Ya — Y Ya — Ye Yd
- [A] 7= [A]

Lg —Lp XLg — Le Lg — Le

Ya —Yb Ya — Yec Ya — Ye

Za — <b Ra — Rc Ra — Re
| Al

t =
« Where A is

Lg —Tp XLgq — Te X(

A=1| Yo=Y Ya—Ye Yd
Za — Rp Za — Re¢ Zd

Ray-Triangle Intersection

o Substituting dummy values

a d g b,]
b e h v | = | k
cfi t l_

« Re-expressed using Crammer's rule
3 = jlei—hf)+k(gf—di)+l(dh—eg)
— M

__i(ak—3b)+h(jc—al)+g(bl—kc)
- M

" f(ak—jb)4+e(jc—al)+d(bl—kc)
M

M = a(ei — hf) +b(gf — di) + c(dh — eg)

Ray-Triangle Intersection

o Substituting dummy values

a d g b,]
b e h v | = | k
cfi t l_

« Re-expressed using Crammer's rule
M = g(bf —ec) + h(dec — af) + i(ae — bd)

P j(bf —ec)+ k(dc— af) + l(ae — bd)

M
d(hl — ki) + e(ji — gl) + f(jh — gk)

B = M
= ~a(hl — ki) +b(ji — gl) + c(jh — gk)

M

Ray-Triangle Intersection Efficiency

o There are a number of efficiencies that can be

iIntroduced
- Solve expressions (such as ei — hf) once and store
them, as they are used again

- Solve for t, if outside of viewing parameters, abort
rest of calculations

Ray-Triangle Intersection Efficiency

« Optimized version of the ray-triangle intersection
that has early conditions for termination

boolean raytri(ray r, vector a, vector b, vector ¢, interval [t, t.])

compute t

if (t<t)or(t>t)then
return falsé

compute y

if (y<0)or(y>1)then
return false

compute B

if(<0)or(p>1-y)then
return false

return true

» Shadows can easily be added to ray tracers

'
'-..

> !I J//} ll////mw o

. If we imagine our point on the surface being
shaded, it is in shadow if we look into the
direction of the light and cannot see it

- Rays from p/q to / known as shadow rays

- May be multiple light sources to check against

e

AW

Specular Reflection

« Mirror-like reflection of light

Specular Reflection

« Key to specular reflection is to viewer looking in
direction d sees whatever the viewer “below”
the surface sees looking in direction r

« In the real world

- Energy loss on the bounce

- Loss different for different colors

Refraction

« Change in direction of light wave

glass - Bcrowell, Sphere - Laszlé Szirmay-Kalos, Barnabas Aszédi, Istvan Lazanyi, Matyas Premecz

Refraction

« Change in direction of light due to a change in
speed
- Typically a result of light passing from one medium to
another

« When ray travels from a medium with refractive
index n into one with refractive index n,, some
light is transmitted and bends

Snhell's Law

. Snell's law tells us that
nsin g =n,sin @
« Note that if n, and n,are reversed then the
angles are as well (‘right side of picture)

A

Ray Tracing — Optimization

« Bounding boxes

« Hierarchical bounding boxes
« Uniform spatial subdivision

» Binary space partitioning

Additional Features

Constructive Solid Geometry (CSG)

« Antialiasing

Soft shadows
Depth of field
Glossy
Motion Blur

