
Ray Tracing

1

2

  Method to produce realistic images
  Determines visible surface at pixel level

- Operates at per-pixel level
- Not at a per-surface level like that of z-buffer or BSP

tree
  Can be rather CPU intensive

3

  Relatively straight-forward to compute shadows
and reflections

  Ability to “pick” the object seen at a pixel
- Could also perform this with other rasterization

techniques if we stored a surface ID

4

  Simplest use is to produce images similar to z-
buffer and BSP trees

  Make sure the appropriate surface is “seen”
through each pixel

  Resultant colored based on:
- Material
- Surface normal
-  Lighting geometry

5

  Geometry is aligned with the origin (eye/
camera) at location e

  The border of the window have simple
coordinates in the uvw coordinate system with
respect to e

6

  Basic idea in ray tracing is to identify
locations on the w = n plane that correspond
to pixel centers

  A ray is just a 3D line from the origin sent
out to that point

7

  We then gaze in the direction of the ray to
see the first object (if any) seen in that
direction

8

compute u, v, w, basis vectors
 for each pixel do
 compute viewing ray
 find first object hit by ray and its surface normal n
 set pixel color to the value based on material, light, n

9

  First, we need to determine a mathematical
representation of a ray
- Ray is just an origin point and a propagation direction
-  3D parametric line is ideal for this

  Line from point e to a point s is
p(t) = e + t(s - e)

10

  First, we find the coordinates of s in the uvw
coordinate system with origin e

  Using a windowing transform yields:

  Where i & j are pixel indices

11

  To convert to canonical coordinates:

  Or, in matrix form

12

  Given a ray e + td we want to find the first
intersection where t > 0

  Smaller values of t indicate closer objects,
whereas larger values of t indicate farther
objects

  If 2 objects are both intersected, the one with
the smallest t value (the closest) is recorded

13

  Given a ray p(t) = e + td and an implicit
surface f(p) = 0, we'd like to know where
they intersect

  Intersection occurs when points satisfy the
implicit equation

f(p(t)) = 0
  This is just

f(e + td) = 0

14

  A sphere with center c = (xc, yc, zc) and radius R
can be represented by the implicit equation

  In vector form

  Any point p that satisfies this equation is on
the sphere.

15

  Plugging in the ray we can solve for the values
of t on the ray which yields points on the sphere

  Rearranging terms yields

  Everything is known except t, so this is a classic
quadratic equation in t, meaning it has form

(e + td− c) · (e + td− c)−R2 = 0

16

  Plugging in the actual terms for t:

  The discriminant (portion under the square root)
determines how many real solutions there are
-  If discriminant is negative, there exists no real

solutions, thus no intersection with sphere
-  If discriminant is positive, there exist 2 real solutions,

ray entry and ray exit
-  If discriminant is zero, there exists a single solution,

ray grazes surface at a single point

17

  The discriminant alone is sufficient for
determining if there is an intersection or not

  Check discriminant first, if negative there is no
intersection
- Abort further computation of the rest of the formula

18

  There are a number of methods for determining
ray-triangle intersection, we'll utilize a
barycentric approach

  If a, b & c are the vertices of triangle we know
that the ray intersects the plane if and only if

19

  The hit point p will be at e + td
  We know that the hit point is inside the

triangle if and only if

  Otherwise, it hits the plane outside of the
triangle

20

  To solve for t, beta and gamma, expand from
vector form into 3 equations (one for each
coordinate)

  Can be rewritten as a standard linear equation

21

  Solve using Cramer's rule

  Where A is

22

  Substituting dummy values

  Re-expressed using Crammer's rule

23

  Substituting dummy values

  Re-expressed using Crammer's rule

t =
j(bf − ec) + k(dc− af) + l(ae− bd)

M

M = g(bf − ec) + h(dc− af) + i(ae− bd)

β =
d(hl − ki) + e(ji− gl) + f(jh− gk)

M

γ = −a(hl − ki) + b(ji− gl) + c(jh− gk)
M

24

  There are a number of efficiencies that can be
introduced
- Solve expressions (such as ei – hf) once and store

them, as they are used again
- Solve for t, if outside of viewing parameters, abort

rest of calculations

25

  Optimized version of the ray-triangle intersection
that has early conditions for termination

boolean raytri(ray r, vector a, vector b, vector c, interval [t0, t1])
 compute t
 if (t < t0) or (t > t1) then
 return false
 compute γ
 if (γ < 0) or (γ > 1) then
 return false
 compute β
 if (β < 0) or (β > 1 – γ) then
 return false
 return true

Call of the Wild - Gilles Tran, Bonsais - Jaime Vives Piqueres 26

  Shadows can easily be added to ray tracers

27

  If we imagine our point on the surface being
shaded, it is in shadow if we look into the
direction of the light and cannot see it
- Rays from p/q to l known as shadow rays
- May be multiple light sources to check against

The Dark Side of the Trees - Gilles Tran, Spheres - Martin K. B. 28

  Mirror-like reflection of light

29

  Key to specular reflection is to viewer looking in
direction d sees whatever the viewer “below”
the surface sees looking in direction r

  In the real world
- Energy loss on the bounce
- Loss different for different colors

glass - Bcrowell, Sphere - László Szirmay-Kalos, Barnabás Aszódi, István Lazányi, Mátyás Premecz 30

  Change in direction of light wave

31

  Change in direction of light due to a change in
speed
- Typically a result of light passing from one medium to

another
  When ray travels from a medium with refractive

index n into one with refractive index nt, some
light is transmitted and bends

32

  Snell's law tells us that
n sin θ = nt sin Φ

  Note that if nt and nt are reversed then the
angles are as well (right side of picture)

33

  Bounding boxes
  Hierarchical bounding boxes
  Uniform spatial subdivision
  Binary space partitioning

34

  Constructive Solid Geometry (CSG)
  Antialiasing
  Soft shadows
  Depth of field
  Glossy
  Motion Blur

