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  Method to produce realistic images 
  Determines visible surface at pixel level 

- Operates at per-pixel level 
- Not at a per-surface level like that of z-buffer or BSP 

tree 
  Can be rather CPU intensive 
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  Relatively straight-forward to compute shadows 
and reflections 

  Ability to “pick” the object seen at a pixel 
- Could also perform this with other rasterization 

techniques if we stored a surface ID 
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  Simplest use is to produce images similar to z-
buffer and BSP trees 

  Make sure the appropriate surface is “seen” 
through each pixel 

  Resultant colored based on: 
- Material 
- Surface normal 
-  Lighting geometry 
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  Geometry is aligned with the origin (eye/
camera) at location e 

  The border of the window have simple 
coordinates in the uvw coordinate system with 
respect to e 
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  Basic idea in ray tracing is to identify 
locations on the w = n plane that correspond 
to pixel centers 

  A ray is just a 3D line from the origin sent 
out to that point 
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  We then gaze in the direction of the ray to 
see the first object (if any) seen in that 
direction 
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compute u, v, w, basis vectors 
 for each pixel do 
  compute viewing ray 
  find first object hit by ray and its surface normal n 
  set pixel color to the value based on material, light, n 
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  First, we need to determine a mathematical 
representation of a ray 
- Ray is just an origin point and a propagation direction 
-  3D parametric line is ideal for this 

  Line from point e to a point s is 
p(t) = e + t(s - e) 
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  First, we find the coordinates of s in the uvw 
coordinate system with origin e 

  Using a windowing transform yields: 

  Where i & j are pixel indices 
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  To convert to canonical coordinates: 

  Or, in matrix form 
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  Given a ray e + td we want to find the first 
intersection where t > 0 

  Smaller values of t indicate closer objects, 
whereas larger values of t indicate farther 
objects 

  If 2 objects are both intersected, the one with 
the smallest t value (the closest) is recorded 
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  Given a ray p(t) = e + td and an implicit 
surface f(p) = 0, we'd like to know where 
they intersect 

  Intersection occurs when points satisfy the 
implicit equation 

f(p(t)) = 0 
  This is just 

f(e + td) = 0 
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  A sphere with center c = (xc, yc, zc) and radius R 
can be represented by the implicit equation 

  In vector form 

  Any point p that satisfies this equation is on 
the sphere. 
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  Plugging in the ray we can solve for the values 
of t on the ray which yields points on the sphere 

  Rearranging terms yields 

  Everything is known except t, so this is a classic 
quadratic equation in t, meaning it has form 

(e + td− c) · (e + td− c)−R2 = 0
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  Plugging in the actual terms for t: 

  The discriminant (portion under the square root) 
determines how many real solutions there are 
-  If discriminant is negative, there exists no real 

solutions, thus no intersection with sphere 
-  If discriminant is positive, there exist 2 real solutions, 

ray entry and ray exit 
-  If discriminant is zero, there exists a single solution, 

ray grazes surface at a single point 
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  The discriminant alone is sufficient for 
determining if there is an intersection or not 

  Check discriminant first, if negative there is no 
intersection 
- Abort further computation of the rest of the formula 
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  There are a number of methods for determining 
ray-triangle intersection, we'll utilize a 
barycentric approach 

  If a, b & c are the vertices of triangle we know 
that the ray intersects the plane if and only if 
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  The hit point p will be at e + td  
  We know that the hit point is inside the 

triangle if and only if 

  Otherwise, it hits the plane outside of the 
triangle 
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  To solve for t, beta and gamma, expand from 
vector form into 3 equations (one for each 
coordinate) 

  Can be rewritten as a standard linear equation 
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  Solve using Cramer's rule 

  Where A is 
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  Substituting dummy values 

  Re-expressed using Crammer's rule 
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  Substituting dummy values 

  Re-expressed using Crammer's rule 

t =
j(bf − ec) + k(dc− af) + l(ae− bd)

M

M = g(bf − ec) + h(dc− af) + i(ae− bd)

β =
d(hl − ki) + e(ji− gl) + f(jh− gk)

M

γ = −a(hl − ki) + b(ji− gl) + c(jh− gk)
M
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  There are a number of efficiencies that can be 
introduced 
- Solve expressions (such as ei – hf) once and store 

them, as they are used again 
- Solve for t, if outside of viewing parameters, abort 

rest of calculations 
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  Optimized version of the ray-triangle intersection 
that has early conditions for termination 

boolean raytri(ray r, vector a, vector b, vector c, interval [t0, t1]) 
 compute t 
 if (t < t0) or (t > t1) then 
  return false 
 compute γ 
 if (γ < 0) or (γ > 1) then 
  return false 
 compute β 
 if (β < 0) or (β > 1 – γ) then 
  return false 
 return true 
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  Shadows can easily be added to ray tracers 
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  If we imagine our point on the surface being 
shaded, it is in shadow if we look into the 
direction of the light and cannot see it 
- Rays from p/q to l known as shadow rays 
- May be multiple light sources to check against 
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  Mirror-like reflection of light 
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  Key to specular reflection is to viewer looking in 
direction d sees whatever the viewer “below” 
the surface sees looking in direction r 

  In the real world  
- Energy loss on the bounce 
- Loss different for different colors 
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  Change in direction of light wave 
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  Change in direction of light due to a change in 
speed 
- Typically a result of light passing from one medium to 

another 
  When ray travels from a medium with refractive 

index n into one with refractive index nt, some 
light is transmitted and bends 
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  Snell's law tells us that 
n sin θ = nt sin Φ 

  Note that if nt and nt are reversed then the 
angles are as well (right side of picture) 



33 

  Bounding boxes 
  Hierarchical bounding boxes 
  Uniform spatial subdivision 
  Binary space partitioning 
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  Constructive Solid Geometry (CSG) 
  Antialiasing 
  Soft shadows 
  Depth of field 
  Glossy 
  Motion Blur 


