Modeling

Definitions

- Modeling
 - Creating a model of an object, usually out of a collection of simpler primitives
- Primitives
 - A basic shape handled directly the rendering system

Boundary Representation (BRep)

- Instead of representing a cube as 6 polygons, represent as 6 planes
 - Surfaces are represented as a hollow shell
 - Just the **boundary**

Common Primitives

- Triangles & Polygons
 - Most common, usually the only choice for interactive
- Patches, Spheres, Cylinders, ...
 - Found in RenderMan
 - Often converted to simpler primitives within the renderer
- Volumes
 - What's at each point in space?
 - Often with some transparent material
 - Few renderers handle both volume & surface models

Composing Primitives

- Collections of large numbers of primitives

 Sometimes called Boundary Representation (BRep)
- Constructive Solid Geometry (CSG)
 - Set operations (union, intersection, difference)
- Implicit Models & Blobs
 - Surface where f(x, y, z) = 0
 - Sum, product, etc. of simpler functions

Modeling Approaches

- Manual primitive creation
- Procedural
- Scan from physical object
- From data (visualization)
- Through image capture (IBR)

Manual Primitive Creation

- Text Editor
- High-level primitives
- Modeling Programs

Text Editor

Display "cube.tif" "file" "rgba" Format 1024 768 1 LightSource "distantlight" 1 Projection "perspective" Translate 0 0 1.5 Rotate 40 -1 1 0 WorldBegin Surface "matte" **AttributeBegin** Translate -0.5 -0.5 -0.5 Scale 0.02 0.02 0.02 Color [0.02 0.02 0.02] TransformBegin Translate 0.5 0.5 0.5 Scale 111 TransformBegin Polygon "P" [0.5 0.5 0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5] Rotate 90 0 1 0 Polygon "P" [0.5 0.5 0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5] Rotate 90 0 1 0 Polygon "P" [0.5 0.5 0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5] Rotate 90 0 1 0 Polygon "P" [0.5 0.5 0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5]

Higher Level Primitives

Many libraries provide higher level primitives
 – (built atop lower level primitives)

Modeling Programs

• Maya, Blender, LightWave, etc...

Constructive Solid Geometry (CSG)

- Objects are solids
- Boolean operations to combine objects
 - Union
 - Intersection
 - Difference

Constructive Solid Geometry (CSG)

Constructive Solid Geometry (CSG)

- Supported by the RenderMan specification via

 RiSolidBegin()
 - RiSolidEnd ()
- However, this is one of the areas where Pixie's implementation falls short of full specification compliance
 - Currently an unimplemented feature on Pixie's "wish list"

Implicit Functions

Model as sum of implicit functionsSurface at threshold

Hybrid Implicit & Polygonal

Procedural

- Describe physical attributes though some (spatial) function
 - Shape
 - Density
 - Color
 - Texture

Procedural Approaches

- Fractals
- Implicit Functions
- Grammars
- Simulations

Fractals

- Complex structure through self-similarity across scales
 - Iterated equations
 - Iterated replacement
 - Spectral synthesis

Mandelbrot Set

 The Mandelbrot set is defined by a family of complex quadratic polynomials

$$f_c: \mathbb{C} \to \mathbb{C}$$

• Given by (where *c* is a complex number)

$$f_c(z) = z^2 + c$$

 For each c the following behavior is considered

 $(0, f_c(0), f_c(f_c(0)), f_c(f_c(f_c(0))), \ldots)$

 $f_c(z)$

• Obtained by iterating (staring at z = 0)

Thus

 $f_c^n(z)$

Denotes the *n*th iteration of

 $f_c(z)$

 The Mandelbrot set is the subset which is constrained as

$$M = \left\{ c \in \mathbb{C} : \sup_{n \in \mathbb{N}} |f_c^n(0)| < \infty
ight\}.$$

Mathematical depiction of the Mandelbrot set
 Point c is black if it belongs to the set

- Colored pictures are usually generated by assigning a color to each point which represents how quickly the sequence
- Diverges to infinity $|f_c^n(0)|$

Fractals – Iterated Replacement

Koch Curve

Fractals – Iterated Replacement

Fractal Mountains

Fractals – Spectral Synthesis

- Spectral energy a function of frequency
 - Higher frequency, less energy
 - Characterizes roughness of surface
 - Natural phenomena tend to be 1/f

Fractals – Noise-Based Synthesis

- Band-limited Perlin noise function
 - Most energy between 1/2 and 1 cycle per unit
 - Average value is 0
 - Random, but repeatable
 - 1D, 2D, 3D & 4D versions common
- Sum noise octaves
 - $n(\mathbf{x}) + \frac{1}{2}n(2\mathbf{x}) + \frac{1}{4}n(4\mathbf{x}) + \dots$
 - Stop add "..." when frequency is too high to see

Perlin Noise

Fractals – Fractal Landscapes

• Landscape height is a fractal function of *x*, *y*

Fractals – Fractal Landscapes

Fractals – Fractal Landscapes

Embellishments – textures, shadows, reflections

Fractals – Fractal Landscapes

• Further embellishments – atmospheric haze, clouds, waves, colored light source

Multi-Fractal Landscapes

- Change roughness across fractal
 Scaling (¹/₂, ¹/₄, ...) becomes a function
- Here, scale is a function of altitude

Hypertexture

Add noise or turbulence to functions

Grammar Based Modeling

- Use (mostly) context-free grammars (CFG) to specify structural change over generations
- Often used to simulate a biological growth process
 - Plants
 - Seashells
- L-Systems (Lindenmayer)

Context Free Grammars

- A CFG G = (V, T, S, P) where
 V is a set of non-terminals
 - T is a set of terminals
 - S is the start symbol
 - P is a set of production (rules) of the form

 $A \rightarrow x$, where $A \in V, x \in (V \cup T)^*$

Applying Grammar Rules

Applying Grammar Rules

- Symbols
 - A, B, straight line segments

- AA[A[B]AA(B)]AAAA(A[B]AA(B))

- [], branch left 45°
- (), branch right 45°
- Rules
- - $B \rightarrow A[B]AA(B)$

Strings

– B

- A[B]AA(B)

В

L-System Examples

- Symbols
 - _ [/] = push/pop
 - +/- = rotate left/right
 - A-Z = straight segment
- Rules
 - 25.7°, Start=X
 - ${}_{-} X \to \mathsf{F}[+X][-X]\mathsf{F}X$
 - ${}_{-} \ \mathsf{F} \to \mathsf{F}\mathsf{F}$

L-Systems Example

- Symbols
 - Same as previous
- Rules
 - 22.5°, Start=X
 - $X \rightarrow F-[[X]+X]+F[+FX]-X$
 - $F \rightarrow FF$

L-Systems Example

- Symbols
 - Same as previous
- Rules
 - 22.5°, Start=F
 - $_{-}$ F \rightarrow FF-[-F+F+F]+[+F-F-F]

L-Systems Additions

- Add any/all of the following
 - 3D Structure
 - Randomness
 - Leaves
 - Flowers
 - Color

 Randomness of 50% introduced in both line segment length and degree of rotation

L-Systems Weeds

L-Systems Plants

L-Systems Plants

L-Systems Flowers

Pruning

Pruning

Simulations

- Biological
 - Simulate growth, development
- Physical
 - Šimulate formation or erosion

Physical Simulations

Scan From Objects

- General concept
 - Find points on surface
 - Connect with mesh
- Mechanical
- Triangulation
 - Laser
 - Structured Light
 - Multiple Cameras
- CAT/MRI scan

Mechanical

Touch tip to surfaceMeasure angles

Triangulation

 Point in space at intersection of ray from A and ray from B

Structured Light

 Point in space at intersection of color edge from light source/projector and ray through camera pixel

projected pattern

resulting model

- Data
 - Measurements
 - Simulation
 - Information
- Present visually
 - Increase understanding
 - Recognize patterns

• Can be 3D object

• Can be 3D, but showing non-visual aspects

Can be not traditionally geometric at all

Image-Based Rendering

- Pixels in one or more cameras
 - Color of point in space
 - Color of light along one ray
- IBR

- Construct new novel view using only image data

Image Based Rendering

