Illumination

Local Illumination

CMSC 435/634

Illumination

Global and Local Illumination

Local Illumination

Interpolation

Illumination

Global and Local Illumination

Global and Local Illumination

Local Illumination

Interpolation

Illumination

- Effect of light on objects
- Mostly look just at intensity
 - Apply to each color channel independently
- Good for most objects
 - Not fluorescent
 - Not phosphorescent

Local Illumination

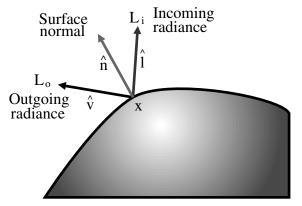
► Light sources shining directly on object

Global Illumination

- Lights from objects shining on other objects
- ► Ambient Illumination
 - Approximate global illumination as constant color
 - \blacktriangleright Typically \sim 1% of direct illumination

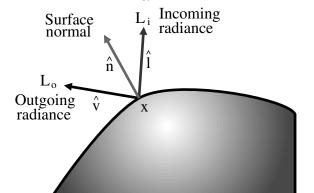
Illumination
Local Illumination

Global and Local Illumination


Local Illumination
BRDF
Rendering Equation
Models

Interpolation

BRDF


Bidirectional Reflectance Distribution Function

How much light reflects from L_i to L_o

Physically Plausible BRDF

- Positive
- Reciprocity
 - ▶ Same light from L_i to L_o as from L_o to L_i
- Conservation of Energy
 - ▶ Don't reflect more energy than comes in

Plotting BRDFs

- Polar plot of reflectance strength
 - ► For **one** view direction, showing light directions
 - ► For **one** light direction, showing view directions
- Reciprocity same if you swap view and light

Rendering Equation

Integral of all Incoming Light

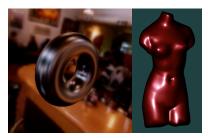
$$L_o(\hat{v}) = \int_{\Omega(\hat{n})} f_r(\hat{v} \leftarrow \hat{l}) L_i(\hat{l}) \, \hat{n} \bullet \hat{l} \, d\omega(\hat{l})$$

Parts of this equation:

$$\begin{array}{lll} L_o(\hat{v}) & \text{outgoing light in direction } \hat{v} \\ \Omega(\hat{n}) & \text{hemisphere above } \hat{n} \\ f_r(\hat{v} \leftarrow \hat{l}) & \text{BRDF from } \hat{l} \text{ to } \hat{v} \\ L_i(\hat{l}) & \text{incoming light from direction } \hat{l} \\ \int_{\Omega(\hat{n})} ... \hat{n} \bullet \hat{l} \, d\omega(\hat{l}) & \text{integration over hemisphere} \\ \hat{n} \bullet \hat{l} \, d\omega(\hat{l}) & \text{projection of differential solid angle onto surface} \end{array}$$

Rendering Equation for Point Lights

Sum for Each Light

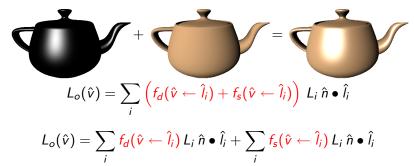

$$L_o(\hat{v}) = \sum_i f_r(\hat{v} \leftarrow \hat{l}_i) L_i \, \hat{n} \bullet \hat{l}_i$$

Parts of this equation:

$$L_o(\hat{v})$$
 outgoing light in direction \hat{v}
 $f_r(\hat{v} \leftarrow \hat{l})$ BRDF from \hat{l} to \hat{v}
 L_i incoming light intensity for light i
 \hat{l}_i incoming light direction for light i

Results

- ▶ Integrating full environment
- Light at one point, black elsewhere



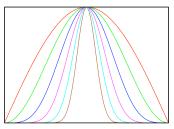
Important directions

$$\hat{n} \qquad \qquad \text{Surface normal} \\ \hat{v} \qquad \qquad \text{Vector from surface toward viewer} \\ \hat{I} \qquad \qquad \text{Vector from surface toward light} \\ \hat{R}_{v} = 2\hat{n}(\hat{n} \bullet \hat{v}) - \hat{v} \qquad \text{Mirror reflection direction for view} \\ \hat{R}_{I} = 2\hat{n}(\hat{n} \bullet \hat{I}) - \hat{I} \qquad \text{Mirror reflection direction for light} \\ \hat{h} = \frac{\hat{v} + \hat{I}}{|\hat{v} + \hat{I}|} \qquad \qquad \text{Normal direction that would reflect } \hat{v} \text{ to } \hat{I} \\ \hat{T}_{v} = \left(\eta \, \hat{n} \bullet \hat{v} - \sqrt{1 - \eta^{2} (\hat{n} \bullet \hat{v})^{2}} \right) \hat{n} - \eta \, \hat{v} \\ \qquad \qquad \qquad \text{Refraction(transmission) direction for } \hat{v}$$

Decomposing BRDFs

- ▶ Decompose BRDF into convenient parts
- Typical breakdown:
 - Diffuse (view independent)
 - Specular (view dependent near reflection)
 - Others less common, often ignored (e.g. retro reflection)

Diffuse


└ Models

- ▶ Also called Lambertian or Matte
- ▶ BRDF constant
- ► Total reflectance: $\sum_i Kd \hat{n} \bullet \hat{l}_i L_i$

Phong

- ▶ Strongest where \hat{R}_l lines up with \hat{v} or \hat{R}_v lines up with \hat{l}
- ► BRDF: $\frac{(\hat{R}_l \bullet \hat{v})^e}{\hat{n} \bullet \hat{l}} = \frac{(\hat{R}_v \bullet \hat{l})^e}{\hat{n} \bullet \hat{l}}$
 - ► Size of *peak* determined by exponent
- ► Total reflectance: $\sum_{i} Ks (\hat{R_{\nu}} \bullet \hat{l_{i}})^{e} L_{i}$
- Non-physical
 - ► Too much energy; division by $\hat{n} \bullet \hat{l}$ breaks reciprocity

Blinn-Phong

- Alternate formulation, similar behavior
- Strongest where \hat{h} lines up with \hat{n}
- ▶ BRDF: $\frac{(\hat{n} \bullet \hat{h})^e}{\hat{n} \bullet \hat{l}}$
- ▶ Total reflectance: $\sum_{i} Ks (\hat{n} \bullet \hat{h_i})^e L_i$
- Still non-physical

Cook-Torrance

- ▶ Imagine random V-shaped mirrored *microfacets*
- ▶ Probability facet has normal \hat{h} (distribution term)
 - ▶ Beckmann Distribution = Gaussian distribution of slope
- Proportion of light or view blocked (geometry term)
 - ► Blocked light = shadowing
 - ▶ Blocked view = *masking*
- Fresnel term

- Models

Cook-Torrance

- ► BRDF: $\frac{D(\hat{n},\hat{h}) \ G(\hat{n},\hat{v},\hat{l}) \ F(\hat{v},\hat{l})}{\pi \ \hat{n} \bullet \hat{v} \ \hat{n} \bullet \hat{l}},$
- ▶ Total reflectance: $\sum_{i} Ks \frac{D(\hat{n}, \hat{h_i}) G(\hat{n}, \hat{v}, \hat{l_i}) F(\hat{v}, \hat{l_i})}{\pi \hat{n} \bullet \hat{v}} L_i$
- ▶ Is physically-plausible
- ▶ Differs from Blinn-Phong primarily at glancing reflection

Illumination
_ Interpolation

Global and Local Illumination

Local Illumination

Interpolation

When to Compute

- ► Flat Shading = Compute per-polygon
- ► Gouraud Shading = Compute per-vertex & interpolate
 - ▶ Lose sharp highlights
 - Subject to Mach banding
- ▶ Phong Shading = Interpolate normals & compute per-pixel

Phong Shading

- ▶ Phong shading can refer to lighting model **or** interpolation
- To save confusion:
 - Phong lighting
 - Phong interpolation