

CMSC 435/634

Global Illumination

Global Illumination

Local Illumination

light – surface – eye
Throw everything else into ambient

Global Illumination

light – surface – surface … – eye
Multiple bounces

Global Illumination

"Backward" algorithms

Follow light transport: eye to light
 Traditional ray tracing

 Follow primary reflection

 Path tracing

 Follow other rays
 Monte-carlo integration

"Forward" algorithms

Follow light transport: light to eye
Lights are emitters
Everything else both emitter & receiver
Integrate bounce to bounce
All surfaces for each bounce (radiosity)
All bounces for one photon (photon map)

Radiosity Approach

 Assume all surfaces are ideal diffuse reflectors; light sources all diffuse emitters
 Consider all interactions between lights and surface elements

 Based on theory from radiative heat transfer

PROGRESSIVE SOLUTION

The above images show increasing levels of global diffuse illumination. From left to right: 0 bounces, 1 bounce, 3 bounces.

Progressive Solution

TH ALL ALL 12 12 Michael F. Cohen, Shenchang Eric Chen, John R. Wallace, Donald P. Greenberg

Cohen, Chen, Wallace, and Greenberg '88

0

More Radiosity Topics

Participating Media • Rushmeier and Torrance'87 Specular Reflections • Immel, Cohen, and Greenberg '86 • Wallace, Cohen, and Greenberg '87 • Sillion '89 Discontinuity Meshing Baum, Mann, Smith, and Winget '91 • Lischinski, Tampieri, Greenberg '92

Participating Medium

Rushmeier 1993

Participating Medium

Radiosity + Specular

Discontinuity Meshing

More Global Illumination Topics

Monte Carlo Methods

Lafortune and Willems '93
Veach and Guibas '97

Error Estimates

Arvo, Torrance, and Smits '94
Lischinski, Smits, and Greenberg '94

Bidirectional Path Tracing & Metropolis Light Transport

The Cornell Box

More Cornell Boxes

Interactive Rendering

Diffuse surfaces only viewpoint independent Pre-compute and store radiosity • As patch/vertex colors As texture Separate solution for each light • Linear combination to change lights

Two pass

Radiosity for diffuse
Ray tracing for reflection
Doesn't handle radiosity of specularly reflected light