Antialiasing

Aliasing

- Visual artifacts
 - Jagged lines and edges
 - High frequencies appearing as low
 - Small objects missed
 - Texture distortions
 - Strobing and popping
 - Backward movement

Disintegrating Textures

Disintegrating textures

Small Objects

•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•

•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•

•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•

Original Scene

Original

scene

Luminosity signal

Rendering Process

- Two basic stages
 - Sampling
 - Reconstruction
- Assuming discrete sampling

Sampling the Scene

Sampling at pixel centers

Sampled signal

Rendered Image

Rendered image

Luminosity signal

Jagged Profiles

Improperly Rendered Detail

Loss of detail

Basis for Prefiltering Algorithms

areas of color within a pixel.

Prefiltering Demonstration

Hello World Hello World

A demonstration

Closeup

Closeup of Prefiltered Image

Sampling Theory

- Shannon's sampling theory (1D):
 - A band limited signal f(t) with cut off frequency w_F may be perfectly reconstructed from its samples $f(nT_0)$ if $2\pi/T_0 \ge 2w_F$
 - $w_F ==$ Nyquist limit
- Alternatively:
 - A signal can be reconstructed exactly from samples only if the highest frequency is less than half the sampling rate

Sampling Issues

Two samples of the same sine wave

Sampling Schemes

- Regular supersampling
- Jittered supersampling
- Adaptive supersampling
- Stochastic sampling

Sampling in the Postfiltering Method

Jittered

Regular

Taking 9 samples per pixel

Reconstruction

- Reconstruction: recreate a continuous signal from a set of samples
- Tasks of reconstruction filter
 - Remove extraneous replicas of signal spectrum
 - Pass the original signal base unchanged

Convolution Filters

22

Convolution Filters

Catmull-Rom Filter

Mitchell-Netravali Filter

Box Weighting Function

Cone Weighting Function

Combines nine samples

Filters combine samples to find a pixel's color.

Using a Filter to Compute Pixel Color

This filter computes

a weighted

average.

Samples

Pixels

No Antialiasing

With Antialiasing

With Antialiasing

With Antialiasing

