CMSC 435

Antialiasing

Aliasing

Visual artifacts

- jagged lines and edges
- high frequencies appearing as low
- small objects missed
- texture distortions
- strobing and popping
- backward movement

•	•	•	•	•	•	•	
•	•	•	•	•	•	•	
•	•	•	•	•	•	•	

•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•		•	•	•	•

Rendering Process

Two basic stages
sampling
reconstruction

Assuming discrete sampling

Original scene

Luminosity signal

Sampling at pixel centers

Rendered image

Luminosity signal

Prefiltering methods examine areas of color within a pixel.

A demonstration

No antialiasing

Sampling Theory

- Shannon's sampling theory (1D):
 - A band limited signal f(t) with cut off frequency w_F may be perfectly reconstructed from its samples f(nT₀) if 2π/T₀ >= 2w_F
 - w_F == Nyquist limit
- Alternatively:
 - a signal can be reconstructed exactly from samples only if the highest frequency is less than half the sampling rate

Sampling Schemes

Regular supersampling
Jittered supersampling
Adaptive supersampling
Stochastic sampling

Fig. 12c. Comb rendered with a regular grid, one sample per pixel.

Fig. 12d. Comb rendered with a jittered grid, one sample per pixel.

Reconstruction

Reconstruction: recreate a continuous signal from a set of samples
 Tasks of reconstruction filter

 remove extraneous replicas of signal spectrum
 pass the original signal base unchanged

Combines nine samples

Filters combine samples to find a pixel's color.

This filter computes a weighted average.

Samples Pixels

